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Abstract A recent development in radio astronomy is to replace traditional dishes

with many small antennas. The signals are combined to form one large, virtual tele-

scope. The enormous data streams are cross-correlated to filter out noise. This is

especially challenging, since the computational demands grow quadratically with the

number of data streams. Moreover, the correlator is not only computationally inten-

sive, but also very I/O intensive. The LOFAR telescope, for instance, will produce

over 100 terabytes per day. The future SKA telescope will even require in the order

of exaflops, and petabits/s of I/O. A recent trend is to correlate in software instead of

dedicated hardware, to increase flexibility and to reduce development efforts.

We evaluate the correlator algorithm on multi-core CPUs andmany-core architec-

tures, such as NVIDIA and ATI GPUs, and the Cell/B.E. The correlator is a stream-

ing, real-time application, and is much more I/O intensive than applications that are

typically implemented on many-core hardware today. We compare with the LOFAR

production correlator on an IBM Blue Gene/P supercomputer. We investigate perfor-

mance, power efficiency, and programmability. We identify several important archi-

tectural problems which cause architectures to perform suboptimally. Our findings

are applicable to data-intensive applications in general.

The processing power and memory bandwidth of current GPUs are highly imbal-

anced for correlation purposes. While the production correlator on the Blue Gene/P

achieves a superb 96% of the theoretical peak performance, this is only 16% on ATI

GPUs, and 32% on NVIDIA GPUs. The Cell/B.E. processor, in contrast, achieves an

excellent 92%. We found that the Cell/B.E. and NVIDIA GPUs are the most energy-

efficient solutions, they run the correlator at least 4 times more energy efficiently

than the Blue Gene/P. The research presented is an important pathfinder for next-

generation telescopes.
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Fig. 1 An extremely simplified view of LOFAR processing.

1 Introduction

A recent development in radio astronomy is to build instruments where traditional

dishes are replaced with many small and simple omni-directional antennas. The sig-

nals of the antennas are combined to form one large virtual telescope. Examples

include current and future instruments such as LOFAR (LOw Frequency Array) [16],

MeerKAT (Karoo Array Telescope) [1], ASKAP (Australian Square Kilometre Array

Pathfinder) [9], and SKA (Square Kilometre Array) [18]. These new generation tele-

scopes produce enormous data streams. The data streams from the different antennas

must be cross-correlated to filter out noise. The correlation process also performs

a data reduction by integrating samples over time. The correlation step is especially

challenging, since the computational demands grow quadraticallywith the number of

data streams. The correlator is extremely demanding, since it is not only computation-

ally intensive, but also very data intensive. In the current field of radio astronomy, the

number of operations that has to be performed per byte of I/O is exceptionally small.

For astronomy, high-performance computing is of key importance. Instruments like

LOFAR are essentially software telescopes, requiring massive amounts of compute

power and data transport capabilities. Future instruments, like the SKA [18], need in

the order of exaflops of computation, and petabits/s of I/O.

Traditionally, the online processing for radio-astronomy instruments is done on

special-purpose hardware. A relatively recent development is the use of supercomput-

ers [17,16]. Both approaches have several important disadvantages. Special-purpose

hardware is expensive to design and manufacture and, equally important, it is inflex-

ible. Furthermore, the process from creating a hardware design and translating that

into a working implementation takes a long time. Solutions that use a supercomputer

(e.g., a Blue Gene/P in the LOFAR case) are more flexible [16], but are expensive

to purchase, and have high maintenance and electrical power cost. Moreover, super-

computers are not always well-balanced for our needs. For instance, most supercom-

puters feature highly efficient double-precision operations, while single precision is

sufficient for our applications.
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In this paper, we investigate the correlation algorithm on many-core hardware,

such as graphics processors (GPUs) [14] and the Cell/B.E. [6]. In contrast to many

others, we do not only use NVIDIA GPUs, but also include ATI hardware. In ad-

dition, we compare with the LOFAR production implementation on a Blue Gene/P

supercomputer [16]. As a reference, we also include multi-core general-purpose pro-

cessors. There are many advantages to the use of many-core systems: it is a flexible

software solution, has lower costs in terms of purchase and maintenance, and the

power usage is significantly lower than that of a traditional supercomputer.

The correlator differs from applications that were investigated onmany-core hard-

ware in the past, because of the correlator’s low flop/byte ratio. In addition, it is a

streaming real-time application, so host-to-device data transfers are on the critical

path. In many other studies, these transfers are not considered.

The production correlator on the Blue Gene/P achieves 96% of the theoretical

peak performance. We demonstrate that the processing power and memory band-

width of current GPUs are highly imbalanced for correlation purposes. This leads

to suboptimal performance. Still, GPUs are considerably more power efficient than

the BG/P (4x for NVIDIA, and 2.4x for ATI). The Cell/B.E. processor, in contrast,

achieves an excellent 92% efficiency. The Cell/B.E. runs the correlator 4-6 times (de-

pending on the manufacturing process of the Cell/B.E.) more energy efficiently than

the Blue Gene/P. The research presented in this paper is an important pathfinder for

next-generation telescopes.

The rest of this paper is structured as follows. Section 2 explains how the corre-

lation algorithm works, and why it is important. In Section 3, we describe the many-

core architectures that we evaluate in detail, finishing with a comparison and discus-

sion. Next, in Section 4, we explain how we implemented the correlator algorithm on

each of these architectures, and describe the performance we achieve. In Section 5,

we evaluate, compare, and discuss the results, while identifying the weak and strong

points of the architectures. Section 6 discusses related work. In Section 7, we investi-

gate if our results and insights can be applied to other applications. Additionally, we

discuss scalability issues. Finally, we conclude in Section 8.

2 Correlating Radio Astronomy Signals

We call a set of receivers that are grouped closely together a station. The data streams

from the different stations must be filtered, delays in the signal path must be compen-

sated for, and the data streams from different stations must be cross-correlated. The

correlation process performs a data reduction by integrating samples over time. In this

paper, we use the LOFAR telescope as an example, but the results apply equally well

to other instruments. An overview of the processing needed for the standard imaging

pipeline of LOFAR is shown in Figure 1. The pipeline runs from left to right. The

thickness of the lines indicates the size of the data streams. In this paper, we focus

on the correlator step (the gray box in Figure 1), because its costs grow quadratically

with the number of stations. All other steps have a lower time complexity. We choose

64 as the number of stations, since that is a realistic number for LOFAR. Future

instruments will likely have even more stations. We call the combination of two sta-
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for (ch=0; ch<nrChannels; ch++)

for (station2=0; station2<nrStations; station2++)

for (station1=0; station1<=station2; station1++)

for (pol1 = 0; pol1 < nrPolarizations; pol1++)

for (pol2 = 0; pol2 < nrPolarizations; pol2++) {

complex float sum = 0 + i*0;

for (time=0; time < integrationTime; time++) {

sum += samples[ch][station1][time][pol1]

* ~samples[ch][station2][time][pol2];

}

baseline = computeBaseline(station1, station2);

correlation[baseline][ch][pol1][pol2] = sum;

}

Fig. 2 Pseudo code for the correlation algorithm.

tions a baseline. The total number of baselines is (nrStations× (nrStations+1))/2,
since we need each pair of correlations only once. This includes the autocorrelations

(the correlation of a station with itself), since we need this later in the pipeline for

calibration purposes. Although the autocorrelations can be computed with fewer in-

structions, we ignore this here, since the number of autocorrelations is small, and

grows linearly with the number of stations, while the number of normal correlations

grows quadratically.

The correlator algorithm itself is straightforward, and can be written in a single

formula:Cs1,s2≥s1,p1∈{X ,Y},p2∈{X ,Y} =∑
t

Zs1,t,p1 ∗Z
∗
s2,t,p2

Pseudo code for the algorithm is shown in Figure 2. A sample is a (2× 32− bit)

complex number that represents the amplitude and phase of a signal at a particular

time. The receivers are polarized; they take separate samples from orthogonal (X and

Y) directions. The received signals from sky sources are so weak, that the antennas

mainly receive noise. To see if there is statistical coherence in the noise, simultane-

ous samples of each pair of stations are correlated, by multiplying the sample of one

station with the complex conjugate (i.e., the imaginary part is negated) of the sample

of the other station. To reduce the output size, the products are integrated, by ac-

cumulating all products. For the LOFAR telescope, we accumulate 768 correlations

at 763 Hz, so that the integration time is approximately one second. This is much

shorter than for current telescopes. The short integration time leads to more output

data. Since the correlation of station A and B is the complex conjugate of the corre-

lation of station B and A, only one pair is computed. Stations are also autocorrelated,

i.e., with themselves. Both polarizations of a station A are correlated with both polar-

izations of a station B, yielding correlations in XX, XY, YX, and YY directions. The

correlator is mostly multiplying and adding complex numbers.

We can implement the correlation operation very efficiently, with only four fma

instructions, doing eight floating-point operations in total. For each pair of stations,

we have to do this four times, once for each combination of polarizations. Thus, in

total we need 32 operations and load 8 floats (32 bytes) from memory, resulting in

exactly one FLOP/byte. The number of operations that is performed per byte that
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Fig. 3 An example correlation triangle.

has to be loaded from main memory is called the arithmetic intensity [12]. For the

correlation algorithm, the arithmetic intensity is extremely low.

An important optimization that we implemented is the reduction of memory loads

by the correlator. This is achieved by keeping correlations that are being accumulated

in registers, and by reusing samples that are loaded from memory as many times

as possible. A sample can be used multiple times by correlating it with the samples

from multiple other stations in the same loop iteration. For example, a sample from

station A in the X polarization that is loaded into a register pair can be correlated

with the X and Y polarizations of stations B, C and D, using it 6 times. Figure 3

shows how we correlate multiple stations at the same time. Each square represents

the XX, XY, YX, and YY correlations of the stations as indicated by row and column

number. The figure is triangular, because we compute the correlation of each pair of

stations only once. The squares labeled A are autocorrelations, which could be treated

specially since they require less computations. The triangle is divided into larger tiles,

in this case 2x3 tiles (the dark gray boxes), but arbitrary sizes are possible. A tile

is correlated as a unit. For example, the lower right-hand-side rectangle correlates

stations 9 and 10 with stations 0, 1, and 2.

It is important to tune the tile size to the architecture. We want to make the tile

size as large as possible, while still fitting in the register file. This offers the highest

level of data reuse. If we have a w× h tile size, the number of operations is given by

f lops = 32wh. The number of bytes that has to loaded from memory is 16(w+ h).
The minimum number of registers that is required is 4(1+min(w,h)) + 8wh. This

is the total number of registers, including accumulators, while reusing registers if a

value is no longer needed (hence the min operation). However, this formula does not

count additional registers that could be needed for data prefetching, address calcu-

lations and loop counters. The number of registers is expressed in single-precision

float registers. If an architecture has vector registers, the result can be divided by the

vector length. Table 1 shows the properties of different tile sizes.

Despite the division of the correlation triangle in tiles, there still is opportunity for

additional data reuse between tiles. The tiles within a row or column in the triangle

still need the same samples. In addition to registers, caches can thus also be used to

increase data reuse. Since we know exactly what data can be reused at what moment,
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Table 1 Properties of different tile sizes.

tile floating point memory loads arithmetic minimum nr.

size operations (bytes) intensity registers (floats)

1x1 32 32 1.00 16

1x2 64 48 1.33 24

1x4 128 80 1.60 40

2x2 128 64 2.00 44

3x2 192 80 2.40 60

3x3 288 96 3.00 88

4x3 384 112 3.43 112

4x4 512 128 4.00 148

we found it is important to have direct influence on the caches and the thread sched-

uler. This way, we can make sure that tiles in same row or column are calculated at

the same time by different threads. Because the algorithm is extremely data intensive,

the resulting optimized implementation on many-cores is typically limited by the ar-

chitecture’s memory bandwidth. The memory aspects of the algorithm are twofold.

There is an algorithmic part, the tile size, which is limited by the number of registers.

The second aspect is architectural in nature: the cache sizes, cache hierarchy and hit

ratio. Together, these two aspects dictate the memory bandwidth that is needed to

keep the ALUs busy.

In this paper, we focus on the maximal performance that can be achieved with a

single many-core chip. It is important to realize that the correlator itself is trivially

parallel, since tens of thousands of frequency channels can be processed indepen-

dently. This allows us to efficiently exploit many-core hardware. We use floating

point instead of integer operations, since all architectures support this well. Single

precision floating point is accurate enough for our purposes.

Since the code is relatively straightforward, we implemented the performance-

critical kernel in assembly on all architectures. Therefore, this paper really compares

the hardware architectures; compilers do not influence the performance. Although

we wrote the critical parts in assembly, the additional code was written in the natural

programming model for each architecture. Therefore, we also take programmability

into account. We do this both for the assembly parts, and the high-level code. The first

is a measure of the programmability of the hardware architecture itself. The second

gives an indication of the quality of the software stack.

3 Many-Core Hardware

Recent many-core architectures present enormous computational performance at very

low costs. For example, the recently introduced ATI 4870x2 GPU has 1600 compute

cores, and achieves a theoretical performance of 2.4 teraflops, all on a single PCI

card. This GPU costs less than 500 dollars, resulting in an unprecedented price/per-

formance ratio. The number of cores in the accelerators also increases rapidly. In only

a few years, the number of cores has increased from about 16, e.g., in the NVIDIA

GeForce 6 series in 2004, to the 1600 cores in the ATI 4870x2, that became available

in 2008. In only 4 years, a 100-fold increase in the number of cores has been real-
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ized. During this time, the theoretical peak performance increased from 12 gigaflops

to 2.4 teraflops, a growth of a factor 200.

Reductions in power costs become increasingly important. For LOFAR, for ex-

ample, a large part of the operational costs is the electrical power consumption. Cur-

rent supercomputers already focus on power efficiency. The IBM Blue Gene/P, for

instance, can perform 384 gflops/kW [8], which is significantly better than current

general-purpose systems. Nevertheless, modern many-core accelerators are, in the-

ory, even more efficient. For example, an NVIDIA GTX280 GPU has a theoretical

peak performance of 3952 gflops/kW, more than ten times better than a Blue Gene/P.

The IBM Roadrunner system [4], which is based on the Cell/B.E. processor, became

the first super computer to achieve one petaflops. The three most energy efficient

supercomputers on the Green500 list1, are similarly based on the Cell/B.E.

Although the number of cores and the theoretical peak performance have in-

creased dramatically, the memory bandwidth did not increase equally fast. In fact,

the available memory bandwidth per core is decreasing for many-core architectures

at the moment. This introduces significant performance bottlenecks for data intensive

applications [14,19]. The important question is: How much of the theoretical perfor-

mance can be reached in practice? In this paper we answer this question for correla-

tion process, we extrapolate our results to data-intensive applications in general. The

increase of both the number of cores and the peak performance is much larger for the

accelerators than for normal CPUs. This makes many-core accelerators interesting

for high-performance computing. In the remainder of this section, we discuss several

many-core architectures in detail, and conclude with a summary and discussion of

the differences that are essential for the correlator, and for data-intensive applications

in general.

3.1 General Purpose multi-core CPU (Intel Core i7 920)

As a reference, we implemented the correlator on a multi-core general purpose archi-

tecture.We use a quad core Intel Core i7 920 CPU (code nameNehalem) at 2.67 GHz.

There is 32 KB of on-chip L1 data cache per core, 256 KB L2 cache per core, and

8 MB of shared L3 cache. The thermal design power (TDP) is 130 Watts. The the-

oretical peak performance of the system is 85 gflops, in single precision. The paral-

lelism comes from four cores with two-way hyperthreading, and a vector length of

four floats, provided by the SSE4 instruction set.

The architecture has several important drawbacks for our application. First, there

is no fused multiply-add instruction. Since the correlator performs mostly multiplies

and adds, this can cause a performance penalty. The processor does have multiple

pipelines, and the multiply and add instructions are executed in different pipelines,

allowing eight flops per cycle per core.

Another problem is that SSE’s shuffle instructions to move data around in vector

registers are more limited than for instance on the Cell/B.E. processor. This compli-

cates an efficient implementation. For the future Intel Larrabee GPU, and for the next

1 See http://www.green500.org.
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generation of Intel processors, both a fused multiply-add instruction and improved

shuffle support has been announced.

The number of SSE registers is small (sixteen 128-bit registers), allowing only

little data reuse. This is a problem for the correlator, since the tile size is limited

by the number of registers. A smaller tile size means less opportunity for data reuse,

increasing the memory bandwidth that is required.

3.2 IBM Blue Gene/P

The IBM Blue Gene/P (BG/P) [8] is the architecture that is currently used for the

LOFAR correlator [16]. Four 850 MHz PowerPC 450 processors are integrated on

each Blue Gene/P chip. We found that the BG/P is extremely suitable for our appli-

cation, since it is highly optimized for processing of complex numbers. The BG/P

performs all floating point operations in double precision, which is overkill for our

application. The L2 prefetch unit prefetches the sample data efficiently from mem-

ory. In contrast to all other architectures we evaluate, the problem is compute bound

instead of I/O bound, thanks to the BG/P’s high memory bandwidth per operation. It

is 3.5–10 times higher than for the other architectures. The ratio between flops and

bytes/sec of memory bandwidth is exactly 1.0 for the BG/P.

The BG/P has a register file with 32 vector registers of width 2. Therefore, 64

floating point numbers (with double precision) can be kept in the register file si-

multaneously. This is the same amount as on the general purpose Intel chip, but an

important difference is that the BG/P has 32 registers of width 2, compared to In-

tel’s 16 of width 4. The smaller vector size reduces the amount of shuffle instructions

needed. The BG/P is an energy efficient supercomputer. This is accomplished by us-

ing many small, low-power chips, at a low clock frequency. The supercomputer also

has excellent I/O capabilities, there are five specialized networks for communication.

3.3 ATI 4870 GPU (RV 770)

Themost high-endGPU provided by ATI (recently acquired by AMD) is the 4870 [3].

The RV770 processor in the 4870 runs at 750 MHz, and has a thermal design power

of 160 Watts. The RV770 chip has ten SIMD cores, each containing 16 superscalar

streaming processors. Each streaming processor has five independent scalar ALUs.

Therefore, the GPU contains 800 (10× 16× 5) scalar 32-bit streaming processors.

The Ultra-Threaded Dispatch Processor controls how the execution units process

streams. The theoretical peak performance is 1.2 teraflops. The 4870 has 1 GB of

GDDR5 memory with a theoretical bandwidth of 115.2 GB/s. The board uses a PCI-

express 2.0 interface for communication with the host system. Each of the ten SIMD

cores contains 16 KB of local memory and separate L1 texture cache. The L2 cache

is shared. The maximum L1 bandwidth is 480 GB/sec. The bandwidth between the

L1 and L2 Caches is 384 GB/sec. The application can specify if a read should be

cached or not. The SIMD cores can exchange data using 16 KB of global memory.

The ATI 4870 GPU has the largest number of cores of all architectures we evalu-

ate (800). However, the architecture has several important drawbacks for data-intensive



9

applications. First, the host-to-device bandwidth is too low. In practice, the achieved

PCI-express bandwidth is far from the theoretical limit. We will explain this in more

detail in Section 4.3. The achieved bandwidth is not enough to keep all cores busy.

Second, we found that overlapping communication with computation by performing

asynchronous data transfers between the host and the device has a large impact on

kernel performance. We observed kernel slowdowns of a factor of three due to trans-

fers in the background. Third, the architecture does not provide random write access

to device memory, but only to host memory. However, for our application which is

mostly read-performance bound, this does not have a large impact (see Section 4.3).

3.4 NVIDIA GPU (Tesla C1060)

NVIDIA’s Tesla C1060 contains a GTX 280 GPU (code-named GT200), is manufac-

tured using a 65 nm process, and has 1.4 billion transistors. The device has 30 cores

(called multiprocessors) running at 1296 MHz, with 8 single precision ALUs, and

one double precision ALU per core. Current NVIDIA GPUs thus have fewer cores

than ATI GPUs, but the individual cores are faster. The memory architecture is also

quite different. NVIDIA GPUs still use GDDR3 memory, while ATI already uses

GDDR5 with the 4870 GPU. The GTX 280 in the Tesla configuration has 4 GB of

device memory, and has a thermal design power of 236 Watts. The theoretical peak

performance is 933 gflops.

The number of registers is large: there are 16384 32-bit floating point registers

per multiprocessor. There also is 16 KB of shared memory per multiprocessor. This

memory is shared between all threads on a multiprocessor, but not globally. There

is a total amount of 64 KB of constant memory on the chip. Finally, texture caching

hardware is available. NVIDIA only specifies that “the cache working set for texture

memory is between 6 and 8 KB per multiprocessor” [2]. The application has some

control over the caching hardware. It is possible to specify which area of device

memory must be cached, while the shared memory is completely managed by the

application.

On GPUs, it is possible to synchronize the threads within a multiprocessor. With

our application, we exploit this to increase the cache hit ratio. This improves perfor-

mance considerably on NVIDIA hardware, but not on ATI hardware. When access-

ing device memory, it is important to make sure that simultaneous memory accesses

by different threads are coalesced into a single memory transaction. In contrast to

ATI hardware, NVIDIA GPUs support random write access to device memory. This

allows a programming model that is much closer to traditional models, greatly sim-

plifying software development. The NVIDIA GPUs suffer from a similar problem as

the ATI GPUs: the host-to-device bandwidth is equally low.

3.5 The Cell Broadband Engine (QS21 blade server)

The Cell Broadband Engine (Cell/B.E.) [6] is a heterogeneous many-core processor,

designed by Sony, Toshiba and IBM (STI). The Cell/B.E. has nine cores: the Power



10

Table 2 Differences between many-core memory architectures.

feature Cell/B.E. GPUs

access times uniform non-uniform

cache sharing level single thread (SPE) all threads in a

multiprocessor

access to off-chip memory not possible, only through DMA supported

memory access asynchronous DMA hardware-managed

overlapping thread preemption

communication communication between independent thread blocks

SPEs through EIB + shared memory within a block

Processing Element (PPE), acting as a main processor, and eight Synergistic Pro-

cessing Elements (SPEs) that provide the real processing power. All cores run at 3.2

GHz. The cores, the main memory, and the external I/O are connected by a high-

bandwidth (205 GB/s) Element Interconnection Bus (EIB). The main memory has a

high-bandwidth (25 GB/s), and uses XDR (Rambus). The PPE’s main role is to run

the operating system and to coordinate the SPEs. An SPE contains a RISC-core (the

Synergistic Processing Unit (SPU)), a 256KB Local Store (LS), and a memory flow

controller.

The LS is an extremely fast local memory (SRAM) for both code and data and is

managed entirely by the application with explicit DMA transfers. The LS can be con-

sidered the SPU’s L1 cache. The LS bandwidth is 47.7 GB/s per SPU. The Cell/B.E.

has a large number of registers: each SPU has 128, which are 128-bit (4 floats) wide.

The theoretical peak performance of one SPU is 25.6 single-precision gflops. The

SPU can dispatch two instructions in each clock cycle using the two pipelines des-

ignated even and odd. Most of the arithmetic instructions execute on the even pipe,

while most of the memory instructions execute on the odd pipe. We use a QS21 Cell

blade with two Cell/B.E. processors and 2 GB main memory (XDR). This is divided

into 1 GB per processor. A single Cell/B.E. in our system has a TDP of 70 W. Re-

cently, an equally fast version with a 50 W TDP has been announced. The 8 SPEs of

a single chip in the system have a total theoretical single-precision peak performance

of 205 gflops.

3.6 Hardware Comparison and Discussion

The memory architectures of the many-core systems are of particular interest, since

our application is mostly memory-throughput bound (as will be discussed in Sec-

tion 4). Table 2 shows some key differences of the memory architectures of the many-

core systems. Both ATI and NVIDIAGPUs have a hardware L1 and L2 cache, where

the application can control which memory area is cached, and which is not. The GPUs

also have shared memory, which is completely managed by the application. Also, co-

alescing and bank conflicts have to be taken into account, at the cost of significant

performance penalties [2]. Therefore, the memory access times are non-uniform. The

access times of the local store of the Cell/B.E., in contrast, are completely uniform

(6 cycles). Also, each Cell/B.E. SPE has its own private local store, there is no cache
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Table 3 Properties of the different many-core hardware platforms. For the Cell/B.E., we consider the local

store to be L1 cache.

Intel IBM ATI NVIDIA STI

Architecture Core i7 BG/P 4870 Tesla C1060 Cell/B.E.

cores x FPUs per core 4x4 4x2 160x5 30x8 8x4

operations per cycle per FPU 2 2 2 2 2

Clock frequency (GHz) 2.67 0.850 0.75 1.296 3.2

gflops per chip 85 13.6 1200 936 204.8

registers per core x register width 16x4 64x2 1024x4 2048x1 128x4

total L1 data cache size per chip (KB) 32 128 ??? ??? 2048

total L1 cache bandwidth (GB/s) ??? 54.4 480 ??? 409.6

total device RAM bandwidth (GB/s) n.a. n.a. 115.2 102 n.a.

total host RAM bandwidth (GB/s) 25.6 13.6 8.0 8.0 25.8

Process Technology (nm) 45 90 55 65 65

TDP (W) 130 24 160 236 70

gflops / Watt (based on TDP) 0.65 0.57 7.50 3.97 2.93

gflops/device bandwidth (gflops / GB/s) n.a. n.a. 10.4 9.2 n.a.

gflops/host bandwidth (gflops / GB/s) 3.3 1.0 150 117 7.9

that is shared between threads. While the GPUs can directly access device memory,

the Cell/B.E. does not provide access to main memory. All data has to be loaded

and stored into the local store first. Also, the way that is used to overlap memory ac-

cesses with computations is different. The Cell/B.E. uses asynchronous DMA trans-

fers, while the GPUs use hardware-managed thread preemption to hide load delays.

Finally, the SPEs of the Cell/B.E. can communicate using the Element Interconnec-

tion Bus, while the multiprocessors of a GPU execute completely independently.

Table 3 shows the key properties of the different architectures we discuss here.

Note that the performance numbers indicate the theoretical peak. The memory band-

widths of the different architectures show large differences. Due to the PCI-e bus,

the host-to-device bandwidth of the GPUs is low. The number of gflops per byte of

memory bandwidth gives an indication of the performance of the memory system. A

lower number means a better balance between memory and compute performance.

For the GPUs, we can split this number into a device-to-host component and an in-

ternal component. It is clear that the relative performance of the memory system in

the Blue Gene/P system is significant higher than that of all the other architectures.

The number of gflops that can be achieved per Watt is an indication of the theoretical

power efficiency of the hardware. In theory, the many-core architectures are more

power efficient than general-purpose systems and the BG/P.

The Bound and Bottleneck analysis [12,24] is a method to gain insight into the

performance that can be achieved in practice on a particular platform. Performance is

bound both by theoretical peak performance in flops, and the product of the memory

bandwidth and the arithmetic intensity AI (the flop/byte ratio):

perfmax = min(perfpeak,AI×memoryBandwidth). Several important assumptions are

made with this method. First, it assumes that the memory bandwidth is independent

of the access pattern. Second, it assumes a complete overlap of communication and

communication, i.e., all memory latencies are completely hidden. Finally, the method

does not take caches into account. Therefore, if the correlator can make effective use
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of the caching mechanisms, performance can actually be better than perfmax. Never-

theless, the perfmax gives a rough idea of the performance than can be achieved.

With the GPUs, there are several communication steps that influence the perfor-

mance. First, the data has to be transferred from the host to the device memory. Next,

the data is read from the device memory into registers. Although the GPUs offer

high internal memory bandwidths, the host-to-device bandwidth is limited by the low

PCI-express throughput (8 GB/s for PCI-e 2.0 16X). In practice, we measured even

lower throughputs. With the NVIDIA GPU, we achieved 5.58 GB/s, and with the

ATI GPU 4.62 GB/s. For both communication steps, we can compute the arithmetic

intensity and the perfmax. The sample data must be loaded into the device memory,

but is then reused several times, by the different tiles. We call the arithmetic inten-

sity from the point of view of the entire computation AIglobal. The number of flops

in the computation is the number of baselines times 32 operations, while the number

of bytes that have to be loaded in total is 16 bytes times the number of stations. As

explained in Section 2, the number of baselines is (nrStations× (nrStations+1))/2.
If we substitute this, we find that AIglobal = nrStations+ 1. Since we use 64 stations,

the AIglobal is 65 in our case. The AIlocal is the arithmetic intensity on the device itself.

The value depends on the tile size, and was described in Section 2.

For both ATI and NVIDIA hardware, the perfmax,global is 65× 8.0= 520 gflops,

if we use the theoretical PCI-e 2.0 16X bandwidth of 8 GB/s. If we look at the PCI-e

bandwidth that is achieved in practice (4.62 and 5.58 GB/s respectively), the GPUs

have a perfmax,global of only 300 gflops for ATI, and 363 gflops for NVIDIA. Since

there is no data reuse between the computations of different frequency channels, this

is a realistic upper bound for the performance that can be achieved, assuming there is

no performance penalty for overlapping device computation with the host-to-device

transfers. We conclude that due to the low PCI-e bandwidth, only a small fraction of

the theoretical peak performance can be reached, even if the kernel itself has ideal

performance. In the following sections we will evaluate the performance we achieve

with the correlator in detail, while comparing to perfmax.

4 Correlator Implementation and Performance

This section describes the implementation of the correlator on the different architec-

tures. In many cases, we experimented with different versions, because it is often

unclear beforehand what the best implementation strategy is. We evaluate the perfor-

mance in detail. For comparison reasons, we use the performance per chip for each

architecture. We also calculate the achieved memory bandwidths for all architectures

in the same way. We know the number of bytes that has to be loaded by the kernel,

depending on the tile size that is used. We divide this by the execution time of the

kernel to calculate the bandwidth. Thanks to data reuse with caches and local stores,

the achieved bandwidth can be higher than the memory bandwidth.
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4.1 General Purpose multi-core CPU (Intel Core i7 920)

We use the SSE3 instruction set to exploit vector parallelism. Due to the limited shuf-

fle instructions, computing the correlations of the four polarizations within a vector

is inefficient. We achieve only a speedup of a factor of 2.8 compared to a version

without SSE3. We found that, unlike on all other platforms, vectorizing the integra-

tion time loop works significantly better. This way, we compute four samples with

subsequent time stamps in a vector. The use of SSE3 improves the performance by a

factor of 3.6 in this case. In addition, we use multiple threads to utilize all four cores.

To benefit from hyperthreading,we need twice as many threads as cores (i.e., 8 in our

case). Using more threads does not help. Hyperthreading increases performance by

6%. The most efficient version uses a tile size of 2×2. Larger tile sizes are inefficient

due to the small SSE3 register file. We achieve a performance of 48.0 gflops, 67% of

the peak, while using 73% of the peak bandwidth.

4.2 IBM Blue Gene/P

The LOFAR production correlator is implemented on the Blue Gene/P platform. We

use it as the reference for performance comparisons. The (assembly) code hides

load and instruction latencies, issues concurrent floating point, integer, and load/store

instructions, and uses the L2 prefetch buffers in the most optimal way. We use a

cell size of 2× 2, since this offers the highest level of reuse, while still fitting in the

register file. The performance we achieve with this version is 13.1 gflops per chip,

96% of the theoretical peak performance. The problem is compute bound, and not

I/O bound, thanks to the high memory bandwidth per flop, as is shown in Table 3.

For more information, we refer to [16].

4.3 ATI 4870 GPU (RV 770)

ATI offers two separate programming models, at different abstraction levels. The

low-level programming model is called the “Compute Abstraction Layer” (CAL).

CAL provides communication primitives and an intermediate assembly language, al-

lowing fine-tuning of device performance. For high-level programming, ATI adopted

Brook, which was originally developed at Stanford [5]. ATI’s extended version is

called Brook+ [3]. We implemented the correlator both with Brook+ and with CAL.

With both Brook+ and CAL, the programmer has to do the vectorization, unlike

with NVIDIA GPUs. CAL provides a feature called swizzling, which is used to select

parts of vector registers in arithmetic operations. For example, it is possible to per-

form operations like mul r0, r1.xxyy, r2.zwzw, which selects the x and y

components of r1 twice, and performs a vector multiplication with the z and w com-

ponents of r2, resulting in the four combinations. We extensively exploit this feature

in the correlator, and found that this improves readability of the code significantly.

Unlike the other architectures, the ATI GPUs are not well documented. Essential in-

formation, such as the number of registers, cache sizes, and memory architecture is
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missing, making it hard to write optimized code. Although the situation improved

recently, the documentation is still inadequate. Moreover, the programming tools are

insufficient. The high-level Brook+ model does not achieve acceptable performance

for our application. The low-level CAL model does, but it is difficult to use.

Synchronizning the threads within a multiprocessor can increase the cache hit

ratio, by ensuring that threads that access the same samples are scheduled at roughly

the same time. With NVIDIA hardware, this leads to a considerable performance

improvement (see Section 4.4). However, although the ATI hardware can synchronize

the threads within a multiprocessor, we could not achieve performance increases this

way.

The architecture also does not provide random write access to device memory.

The kernel output can be written to at most 8 output registers (each 4 floats wide).

The hardware stores these to predetermined locations in device memory. When using

the output registers, at most 32 floating point values can be stored. This effectively

limits the tile size to 2× 2. Random write access to host memory is provided. The

correlator reduces the data by a large amount, and the results are never reused by the

kernel. Therefore, they can be directly streamed to host memory.

The theoretical operations/byte ratio of the ATI 4870 architecture is 10.4 for de-

vice memory (see Table 3). In order to achieve this ratio with our application, a mini-

mal tile size of 10×10 would be needed. This would require at least 822 registers per

thread. This is unfeasible, so we cannot achieve the peak performance. Data sharing

between tiles using the hardware caches could improve this situation.

The best performing implementation streams the result data directly to host mem-

ory, and uses a tile size of 4x3, thanks to the large number of registers. The kernel

itself achieves 420 gflops, which is 35% of the theoretical peak performance. The

achieved device memory bandwidth is 114 GB/s, which is 99% of the theoretical

maximum. Thanks to the large tile size, the cache hit ratio is 65%. As is shown in

Table 1, the arithmetic intensity with this tile size is 3.43. Therefore,

perfmax = min(1200,3.43× 115.2)= 395. We achieve significantly more than this,

thanks to the texture cache.

If we also take the host-to-device transfers into account, performance becomes

much worse. We found that the host-to-device throughput is only 4.62 GB/s in prac-

tice, although the theoretical PCI-e bus bandwidth is 8 GB/s. The transfer can be

done asynchronously, overlapping the computation with host-to-device communica-

tion. However, we discovered that the performance of the compute kernel decreases

significantly if transfers are performed concurrently. For the 4× 3 case, the compute

kernel becomes 2.2 times slower, which can be fully attributed to the decrease of

device memory throughput. Due to the low I/O performance, we achieve only 190

gflops, 16% of the theoretical peak. This is 63% of the perfmax,global of 300 gflops

that we calculated in Section 3.6.

4.4 NVIDIA GPU (Tesla C1060)

NVIDIA’s programming model is called Cuda [2]. Cuda is relatively high-level, and

achieves good performance. However, the programmer still has to think about many
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details such as memory coalescing, the texture cache, etc. An advantage of NVIDIA

hardware and Cuda is that the application does not have to do vectorization. This

is thanks to the fact that all cores have their own address generation units. All data

parallelism is expressed by using threads.

The correlator uses 128-bit reads to load a complex sample with two polariza-

tions with one instruction. Since random write access to device memory is supported

(unlike with the ATI hardware), we can simply store the output correlations to device

memory. We use the texture cache to speed-up access to the sample data. We do not

use it for the output data, since that is written only once, and never read back by the

kernel. With Cuda, threads within a thread block can be synchronized. We exploit

this feature to let the threads that access the same samples run in lock step. This way,

we pay a small synchronization overhead, but we can increase the cache hit ratio

significantly. We found that this optimization improved performance by a factor of

2.0.

We also investigated the use of the per-multiprocessor shared memory as an

application-managed cache. Others report good results with this approach [20]. How-

ever, we found that, for our application, the use of shared memory only led to perfor-

mance degradation.

The best performing implementation uses a tile size of 3x2. The optimal tile

size is influenced by the way the available registers are used. The register file is a

shared resource. A smaller tile size means less register usage, which allows the use

of more concurrent threads, hiding load delays. On NVIDIA hardware, we found that

the using a relatively small tile size and many threads increases performance.

The kernel itself, without host-to-device communication achieves 314 gflops,

which is 34% of the theoretical peak performance. The achieved device memory

bandwidth is 122 GB/s, which is 120% of the theoretical maximum. We can reach

more than 100% because we include data reuse. The performance we get with the

correlator is significantly improved thanks to this data reuse, which we achieve by

exploiting the texture cache. The advantage is large, because separate bandwidth tests

show that the theoretical bandwidth cannot be reached in practice. Even in the most

optimal case, only 71% (72 GB/s) of the theoretical maximum can be obtained. The

arithmetic intensity with this tile size is 2.4. We can use this to calculate the maximal

performance without communication. perfmax = min(966,2.4× 102)= 245 gflops.

In practice, the performance is better than that: we achieve 128% of this, thanks to

the efficient texture cache.

If we include communication, the performance drops by 15%, and we only get

274 gflops. Just like with the ATI hardware, this is caused by the low PCI-e band-

width. With NVIDIA hardware and our data-intensive kernel, we do see significant

performance gains by using asynchronous I/O. With synchronous I/O, we achieve

only 162 gflops (compared to the 274 we get with asynchronous I/O). Therefore, the

use of asynchronous I/O is essential.

Since memory coalescing is so important on GPUs, we also investigated an al-

ternative implementation, that first performs a memory transpose. This way, we can

make sure that the GPU threads always read the samples in a coalesced way as much

as possible. Normally, the memory layout is such that a sequence of samples over time

are subsequently stored in memory per station. For the earlier steps in the correlator
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Fig. 4 Transposing the memory layout for better memory coalescing on the GPU.

pipeline, this is the natural order. However, if we change this around, and store the

data from all stations for each time step together, we can achieve better performance

on the GPU. The two different memory layouts are shown in Figure 4. Of course,

this data transpose is costly. Nevertheless, we found that the total performance in the

system can be increased, if we perform the transpose on the host, while the GPU is

correlating. Thus, we overlap the computation on the GPU with both the transpose on

the host and the data transfer from the host to the device. Performing the transpose

on the GPU puts it on the critical path, and decreases performance considerably. Our

transpose on the host is implemented using multiple threads to exploit the multi-core

architecture, and using SSE instructions for better memory throughput. With this ap-

proach, we were able to fully overlap the transpose with useful work on the GPU.

Therefore, the transpose is moved completely off the critical path.

A drawback of this approach is that it puts additional stress on the host CPU and

memory bus. In a production setup, the host is also used to receive the sample data

from the network. Moreover, the CPU could be used to perform additional tasks,

such as pre- or post-processing of the data. Possible steps could be filtering, bandpass

and phase corrections, etc. It is unclear what would be more efficient: using the host

for the data transpose as described above, or using it for additional processing steps.

Further research is needed to clarify thus further.

With the alternative memory layout, the performance of the kernel itself increases

from 314 to 357 gflops (38% of the peak). For the version that includes the PCI-e I/O,

the performance increases from 274 to 300 gflops (32% of the peak). The internal

memory bandwidth we achieve is 139 GB/s. This thus is significantly higher than the

122 GB/s we got without the data transpose. In Section 3.6, we calculated that the

perfmax,global for our hardware is 363 gflops. In practice, we achieve 83% of this limit

due to the external I/O problems.

4.5 The Cell Broadband Engine (QS21 blade server)

The basic Cell/B.E. programming is based onmulti-threading: the PPE spawns threads

that execute asynchronously on SPEs. The SPEs can communicate with other SPEs
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and the PPE, using mechanisms like signals and mailboxes for synchronization and

small amounts of data, or DMA transfers for larger data. With the Cell/B.E. it is

important to exploit all levels of parallelism. Applications deal with task and data

parallelism across multiple SPEs, vector parallelism inside the SPEs, and double or

triple-buffering for DMA transfers [6]. The Cell/B.E. can be programmed in C or

C++, while using intrinsics to exploit vector parallelism.

The large number of registers (128 times 4 floats) allows a big tile size of 4× 4,

leading to a lot of data reuse. We exploit the vector parallelism of the Cell/B.E. by

computing the four polarization combinations in parallel. We found that this performs

better than vectorizing over the integration time. This is thanks to the Cell/B.E.’s

excellent support for shuffling data around in the vector registers. The shuffle in-

struction is executed in the odd pipeline, while the arithmetic is executed in the even

pipeline, allowing them to overlap.

We identified a minor performance problem with the pipelines of the Cell/B.E.

Regrettably, there is no (auto)increment instruction in the odd pipeline. Therefore,

loop counters and address calculations have to be performed on the critical path, in the

even pipeline. In the time it takes to increment a simple loop counter, four multiply-

adds, or 8 flops could have been performed. To circumvent this, we performed loop

unrolling in our kernels. This solves the performance problem, but has the unwanted

side effect that it uses local store memory, which is better used as data cache.

A distinctive property of the architecture is that cache transfers are explicitly man-

aged by the application, using DMA. This is unlike other architectures, where caches

work transparently. Although issuing explicit DMA commands complicates program-

ming, for our application this is not problematic.

By dividing the integration time into smaller intervals, we can keep the sample

data for all stations in the local store. We overlap communication with computation,

by using multiple buffers. For the sample data we use double buffering. Thanks to the

explicit cache, the correlator implementation fetches each sample frommain memory

only exactly once.

For the correlation output data, several approaches are possible. In [15], we de-

scribe an implementation that loads and stores a strip of tiles into the local store with

one DMA operation. Consider the example of Figure 3, for instance, with a tile size

of 2× 3. In this case, we load three rows of correlations (the height of a tile) at once,

for instance the rows 0, 1, and 2. Because of this, we have to load and store the corre-

lations to main memory several times, since the sub-results have to be accumulated.

Since the correlations are both read and written, we use triple buffering in this case.

We also developed a version that keeps the correlation results in the local store,

and stores the correlation output data to host memory only once. Double buffering is

enough in this case. We can fit the result in the local store if the number of receivers is

not too large (e.g., 64). For the LOFAR instrument, this is the case. The achieved per-

formance of the two versions is identical. However, both have their own advantages.

The first version scales to larger numbers of receivers, but uses more bandwidth be-

tween the host memory and the SPEs. This bandwidth is available on the Cell/B.E.,

so this does not hurt performance. The second version uses less bandwidth, but is

limited in the number of receivers. However, the amount of host memory bandwidth
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used is important, since we may want to run additional operations on the host (the

PPE), such as receiving data from the network, and preprocessing it.

If an even larger number of receivers is used (e.g., 256), good performance can

still be achieved on the Cell/B.E.. This can be done by splitting the correlation trian-

gle of Figure 3 in blocks (e.g., of size 32×32), which are in turn divided into the tiles

we already used in the previous implementations. On the SPEs, we now only load the

samples inside the block into the local store, and not the entire triangle. A complica-

tion is that the X and Y directions of the blocks no longer deal with the same samples

in all cases. For example, in the X direction, the samples could run from 0–31, while

the Y-axis runs from 64–96. Therefore, the number of samples that has to be loaded

into the local store increases with a factor of two. Nevertheless, the Cell/B.E. has the

bandwidth that is needed for this.

Due to the high memory bandwidth and the ability to reuse data, we achieve 188

gflops, including all memory I/O. This is 92% of the peak performance on one chip. If

we use both chips in the cell blade, the performance drops only with a small amount,

and we still achieve 91% (374 gflops) of the peak performance. Even though the

memory bandwidth per operation of the Cell/B.E. is eight times lower than that of

the BG/P, we still achieve excellent performance, thanks to the high data reuse factor.

5 Comparison and Evaluation

In this section, we compare the performance, power efficiency, and programmablity

of the different architectures.We also discuss a relatively new development:OpenCL.

We describe how we implemented the correlator using this language.

5.1 Performance

Figure 5 shows the performance on all architectures we evaluated. The NVIDIAGPU

achieves the highest absolute performance. Nevertheless, the GPU efficiencies are

much lower than on the other platforms. The Cell/B.E. achieves the highest efficiency

of all many-core architectures, close to that of the BG/P. Although the theoretical peak

performance of the Cell/B.E. is 4.6 times lower than the NVIDIA chip, the absolute

performance is only 1.6 times lower. If both chips in the QS21 blade are used, the

Cell/B.E. also has the highest absolute performance. For the GPUs, it is possible to

use more than one chip as well. This can be done in the form of multiple PCI-e cards,

or with two chips on a single card, as is done with the ATI 4870x2 device. However,

we found that this does not help, since the performance is already limited by the low

PCI-e throughput, and the chips have to share this resource. The graph indeed shows

that the host-to-device I/O has a large impact on the GPU performance, even when

using one chip. With the Cell/B.E., the I/O (from main memory to the Local Store)

only has a very small impact.
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Fig. 5 Achieved performance on the different platforms.

Table 4 Measured performance of the different many-core hardware platforms.

Intel IBM ATI NVIDIA STI Cell

Architecture Core i7 BG/P 4870 Tesla C1060 (full blade)

measured gflops (including I/O) 48.0 13.1 190 300 374

achieved efficiency 67% 96% 16% 32% 91%

measured bandwidth (GB/s) 18.6 6.6 81 139 49.5

bandwidth efficiency 73% 48% 70% 136% 192%

TDP chip (W) 130 24 160 236 140

theoretical gflops / Watt 0.65 0.57 7.50 3.97 2.93

achieved gflops/Watt (TDP) 0.37 0.54 1.19 1.27 2.67

power efficiency compared to BG/P (TDP) 0.69 x 1.0 x 2.20 x 2.35 x 4.9 x

measured power, full system (W) 208 44 259 250 315

achieved gflops/Watt full system 0.23 0.30 0.73 1.20 1.18

power efficiency compared to BG/P 0.77 x 1.0 x 2.4 x 4.0 x 3.9 x

5.2 Power Efficiency

In Table 4, we present the power efficiency for the different architectures. The results

show that the Cell/B.E. chip is about five times more energy efficient than the BG/P.

This is not a fair comparison, since the BG/P includes a lot of network hardware on

chip, while the other architectures do not offer this. Nevertheless, it is clear that the

Cell/B.E. is significantly more efficient. A 45 nm version of the Cell/B.E. has been

announced for early 2009. With this version, which has identical performance, but

reduces the TDP to about 50W, the Cell/B.E. chip even is seven times more efficient

than the BG/P. The 65 nm version of the Cell/B.E. chip already is about 2.3 times

more energy efficient than the GPUs (based on TDP). The fact that the three most
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energy efficient supercomputers on the Green500 list2 are based on the Cell/B.E.

supports our findings. The Green500 list also specifies the achieved power efficiency

for entire supercomputers, i.e. including memory, chipsets, networking hardware,

etc. PowerXCell-based systems achieve 0.54 glops/W, while the Blue Gene/P is less

power efficient, and achieves 0.37 gflops/W. Systems based on general-purposeCPUs

only achieve 0.27 gflops/W.

The situation is different if we do not just look at the chips themselves, but also

take the full host system into account. The lower three lines in Table 4 show the

measured power and efficiencies of the full systems, while utilized. For the GPUs,

this means that we integrated them in the Core i7 host system that we also use for

the general purpose CPU measurements. We measured the dissipated power with a

VoltCraft-3000 power meter. The results show that the full Cell blade uses relatively

much power in addition to the TDP of the two Cell/B.E. chips. This is partially caused

by the XDR memory in the system. As a result of this, the achieved performance per

Watt is lower than expected, but still 3.9 times higher than that of the BG/P. For the

NVIDIA GPU, however, the opposite is true. In practice, the device consumes much

less power than specified by the TDP. Therefore, the achieved efficiency of a full

system with the GPU is almost the same as that of the Cell/B.E.. The ATI GPU is

much less efficient, due to the small fraction of the theoretical peak performance that

is reached in practice.

5.3 Programmablity

The performance gap between assembly and a high-level programming language is

quite different for the different platforms. It also depends on how much the compiler

is helped by manually unrolling loops, eliminating common sub-expressions, the use

of register variables, etc., up to a level that the C code becomes almost as low-level

as assembly code. The difference varies between only a few percent to a factor of 10.

For the BG/P, the performance from compiled C++ code was by far not sufficient.

The assembly version hides load and instruction latencies, issues concurrent floating

point, integer, and load/store instructions, and uses the L2 prefetch buffers in the most

optimal way. The resulting code is approximately 10 times faster than C++ code. For

both the Cell/B.E. and the Intel core i7, we found that high-level code in C or C++

in combination with the use of intrinsics to manually describe the SIMD parallelism

yields acceptable performance compared to optimized assembly code. Thus, the pro-

grammer specifies which instructions have to be used, but can typically leave the

instruction scheduling and register allocation to the compiler. On NVIDIA hardware,

the high-level Cuda model delivers excellent performance, as long as the programmer

helps by using SIMD data types for loads and stores, and separate local variables for

values that should be kept in registers. With ATI hardware, this is different. We found

that the high-level Brook+model does not achieve acceptable performance compared

to hand-written CAL code.Manually written assembly is more than three times faster.

Also, the Brook+ documentation is insufficient.

2 See http://www.green500.org.
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Table 5 Strengths and weaknesses of the different platforms for data-intensive applications.

Intel IBM ATI NVIDIA STI

Core i7 920 Blue Gene/P 4870 Tesla C1060 Cell/B.E.

+ well-known + L2 prefetch unit + largest number + random + random

works well of cores write access write access

+ high memory + swizzling + Cuda is + shuffle

bandwidth high-level capabilities

+ explicit cache

+ power efficiency

- few registers - everything - low PCI-e - low PCI-e - multiple

- no fma double precision bandwidth bandwidth parallelism levels

- limited - expensive - transfer slows - no increment

shuffling down kernel in odd pipe

- no random

write access

- CAL is low-level

- bad Brook+

performance

- not well

documented

In Table 5 we summarize the architectural strengths and weaknesses that we iden-

tified. Although we focus on the correlator application in this paper, the results are

applicable to applications with low flop/byte ratios in general.

5.4 Implementing the Correlator with OpenCL

An interesting recent development is the OpenCL programmingmodel [10]. OpenCL

is an open standard for parallel programming of heterogeneous systems, developed

by the Khronos Group. Many important industry partners participate in the effort.

Many-core vendors (e.g., AMD, IBM, Intel, ATI, NVIDIA) have pledged to sup-

port OpenCL to increase both portability and programmability of their hardware.

The main idea of OpenCL is that a single language is used to program the many-core

hardware of all different vendors. We have implemented the correlator application

in OpenCL, and tested it with the latest available OpenCL implementations. Cur-

rently, AMD provides OpenCL support for multi-core CPUs (not GPUs) in the sec-

ond beta release of their stream SDK version 2.0. NVIDIA released OpenCL support

for their GPUs in a closed beta program. Since both implementations are still in the

beta stages, we do not discuss performance, but only programmability and portability.

OpenCL consists of two parts: a host API (to interface with the C program that

runs on the CPU), and a special C-based language to develop kernels that run on

the accelerators. The host interface is very low-level, and is similar to ATI’s CAL,

or NVIDIA’s driver API. The Cuda model provided by NVIDIA has a much higher

abstraction level than OpenCL, and is significantly easier to use. AMD provides an

additional set of C++ wrappers around OpenCL’s C interface, but this set is not stan-
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Table 6 Strengths and weaknesses of OpenCL.

Strengths Weaknesses

+ high-level kernel language - low-level host API

+ vectorization and swizzling - only C binding standardized (no C++, Java, or Python)

+ portability - performance portability not solved

+ runtime compilation

dardized. An important aspect of OpenCL is that it uses run-time compilation for the

kernels.

To demonstrate the level of abstraction of the host part of the OpenCL program-

ming model, we will describe the many steps that are necessary to run a kernel. An

OpenCL program has to create a context and a command queue. Next, the kernel pro-

gram has to be loaded from disk (or constructed in memory), and a program object

has to be created. Then, the program has to be compiled, and a kernel object has

to be created. Subsequently, the arguments to the kernel invocation have to be set,

using a call per parameter. Similar to CAL and Cuda, all buffers have to be explic-

itly allocated and transferred from the host to the device. Finally, a domain has to

be specified, indicating the number of global and local threads to use. Only after all

these steps, can the kernel be launched. Also, if texture-cached memory is used, as

we do with the correlator on GPUs, the programmer has to explicitly create 2D or 3D

image objects, which also use a different set of calls for the data transfers. Here, the

graphics origins of OpenCL clearly shine through.

The language that is used to write the kernels is based on C, with additional ex-

tensions. The level of abstraction is similar to Cuda, and of higher level than CAL and

the assembly that is needed to program the Cell or CPUs efficiently. A large step for-

ward is that the language has a standard interface to perform vectorization, and also

supports swizzling to shuffle data around inside vectors. Special annotations are used

to declare data structures in the different memory regions (global, constant, local, and

private). Finally, special operations have to be used to load data from texture-cached

memory.

We wrote several versions of the correlator in OpenCL, using different tile sizes,

and using normal and texture-cached memory. A large benefit of OpenCL is that the

code indeed does compile and run without any changes on both CPUs and GPUs.

The only exception was a correlator version that uses the texture cache: AMD’s beta

version does not support this yet. We assume this problem will be solved for the final

release.

However, the problem of performance portability is not fully solved by OpenCL

yet. First, we had to vectorize the correlator kernel code. With NVIDIA hardware

(and the Cuda model), this is not necessary. Therefore, NVIDIA’s runtime compiler

removes the vectorization. On the CPU, the vectorization did increase performance.

Second, the different platforms have very different memory models. The programmer

still has to deal with these differences to reach the best performance. The texture

cache of the GPUs and the local store of the Cell/B.E. are examples of this. Moreover,

we found that our algorithmic changes are still necessary: the different platforms need

different tile sizes to perform optimally, due to the different numbers of registers
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they have. Finally, the different architectures require very different numbers of global

and local threads: only a few global threads for CPUs, and many thousands, divided

over global and local threads, for the GPU. Table 6 summarizes the strengths and

weaknesses of OpenCL that we identified.

6 Related Work

Intel’s 80-core Terascale Processor [13] was the first generally programmable mi-

croprocessor to break the teraflop barrier. It has a good flop/Watt ratio, making it an

interesting candidate for future correlators.

Intel’s Larrabee [19] (to be released) is another promising architecture. Larrabee

will be a hybrid between a GPU and a multi-core CPU. It will be compatible with

the x86 architecture, but will have 4-way simultaneous multi-threading, 512-bit wide

vector units, shuffle and multiply-add instructions, and special texturing hardware.

Larrabee will use in-order execution, and will have coherent caches. Unlike current

GPUs, but similar to the Cell/B.E., Larrabee will have a ring bus for communication

between cores and for memory transactions.

Another interesting architecture to implement correlators are FPGAs [11]. LO-

FAR’s on-station correlators are also implemented with FPGAs. Solutions with FP-

GAs combine good performance with flexibility. A disadvantage is that FPGAs are

relatively difficult to program efficiently. Also, we want to run more than just the

correlator on our hardware. LOFAR is the first of a new generation of software tele-

scopes, and how the processing is done best is still the topic of research, both in

astronomy and computer science. We perform the initial processing steps on FPGAs

already, but find that this solution is not flexible enough for the rest of the pipeline.

For LOFAR, currently twelve different processing pipelines are planned. For exam-

ple, we would like to do the calibration of the instrument and pulsar detection online

on the same hardware, before storing the data to disk. We even need to support multi-

ple different observations simultaneously. All these issues together require enormous

flexibility from the processing solution. Therefore, we restrict us to many-cores, and

leave application-specific instructions and FPGAs as future work. Once the process-

ing pipelines are fully understood, future instruments, such as the SKA, will likely

use ASICs.

Williams et al. [23] describe an auto-tuning framework formulti-cores. The frame-

work can automatically perform different low-level optimizations to increase perfor-

mance. However, GPUs are not considered in this framework. We performed all op-

timizations manually, which is possible in our case, since the algorithm is relatively

straightforward. More important, we found that in our case, algorithmic changes are

required to achieve good performance. Examples include the use of different tile

sizes, and vectorizing over the different polarizations instead of the inner time loop.

A software-managed cache is used on the Cell/B.E. processor. GPUs typically

have a small amount of shared memory that can be used in a similar way [20]. An

important difference is that in the Cell/B.E. the memory is private for a thread, while

with GPUs all threads on a multiprocessor share the memory. The available memory
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per thread is also much smaller. We applied the technique described in [20], but found

it did not increase performance for our application.

Wayth et al. describe a GPU correlator for theMurchisonWidefield Array (MWA) [22].

They optimize their code by tiling the correlator triangle in one dimension (a tech-

nique described by Harris et.al. [7]), while tiling in two dimensions, as we described

in this paper, is muchmore efficient. For instance, a 2x2 tile requires the same amount

of operations as a 1x4 tile, but performs fewer memory operations (see table 1). For

larger tiles, the arithmetic intensity of two-dimensional tiles is even better. Also, the

MWAGPU version does not use the texture cache, but shared memory.We found that

this was significantly slower. Their claim that their GPU implementation is 68 times

faster than their CPU implementation is highly biased, since their CPU implementa-

tion is not optimized, single threaded, and does not use SSE. As a result, our CPU

version is 48 times faster than their CPU version, while our GPU version is 4.2 times

faster than their GPU version (even though our data rates are four times as high due

to our larger sample sizes). Hence, their GPU implementation is only 1.4 times faster

than an optimized CPU implementation, not 68 times.

7 Discussion

A key application characteristic of the correlator is that it is extremely regular. This

means that we know exactly which memory is referenced at what time. In this paper,

we explained that this property makes many optimizations possible. We also imple-

mented several other signal-processing algorithms we did not discuss here, albeit not

on all many-core architectures. Most of our conclusions hold for all (data-intensive)

applications. However, this paper does not compare the ability of the architectures to

cope with unpredictable memory access patterns. We know, for example, that a par-

ticular radio-astronomy imaging algorithm (W-projection) exhibits random memory

access, and as a result performs poorly on at least some of these architectures, and

probably all [21]. Also, the software-manged cache of the Cell/B.E. is less effective

here, since the programmer cannot predict the accesses in advance. Fortunately, not

all applications behave so unpredictably. In general, we advocate that the focus for

optimizations for many-core architectures should be on memory bandwidth, access

patterns, and efficient use of the caches, even at the cost of increased synchronization

and extra computation.

In this paper, we focus on the maximal performance that can be achieved with

a single many-core chip. An exiting result we present here is that even extremely

data-intensive applications, such as the correlator, can perform well on many-core

architectures, in particular on the Cell/B.E.. These results allows us to move forward,

and bring up the question of scalability: can we scale the results to a full system that

processes all telescope data? In this context, it is important to emphasize that the cor-

relator itself is trivially parallel, since tens of thousands of frequency channels can

be processed independently. However, in case of an FX correlator, a major data ex-

change is necessary prior to correlation: each input contains all frequency channels

of a single receiver, but the correlator requires a single frequency channel of all re-

ceivers. We implemented this for the LOFAR correlator on the 3-D torus of the Blue
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Gene/P, where we exchange all data asynchronously. Although an efficient imple-

mentation is complex, the time required for this exchange is small compared to the

time to correlate the data. Moreover, the data rates grow linearly with the number of

receivers, while the compute time of the correlator algorithm grows quadratically.We

also experimented on a PC cluster with a Myrinet switch, which was able to handle

the all-to-all exchange at the required data rates. On the Blue Gene/P, we can scale

the application to more than 10.000 cores. For more information, we refer to [17,16].

8 Conclusions

Current and future telescopes have high computational and I/O demands. Therefore,

we evaluated the performance of the extremely data-intensive correlator algorithm

on today’s many-core architectures. This research is an important pathfinder for fu-

ture radio-astronomy instruments. The algorithm is simple, we can therefore afford

to optimize and analyze the performance by hand, even if this requires assembly,

application-managed caches, etc. The performance of compiler-generated code is

thus not an issue: we truly compared the architectural performance.

Compared to the BG/P, many-core architectures have a significantly lower mem-

ory bandwidth per operation. Minimizing the number of memory loads per operation

is of key importance. We do this by extensively optimizing the algorithm for each ar-

chitecture. This includes making optimal use of caches and registers. A high memory

bandwidth per flop is not strictly necessary, as long as the architecture allows efficient

data reuse. This can be achieved through caches, local stores and registers.

Only two architectures perform well with our application. The BG/P supercom-

puter achieves high efficiencies thanks to the high memory bandwidth per FLOP. The

Cell/B.E. also performs excellently, even though its memory bandwidth per operation

is eight times lower. We achieve this by exploiting the application-managed cache

and the large number of registers, optimally reusing all sample data. The Cell/B.E. is

about five to seven times more energy efficient than the BG/P, if we do not take the

network hardware into account.

It is clear that application-level control of cache behavior (either through explicit

DMA or thread synchronization) has a substantial performance benefit, and is of key

importance for data intensive high-performance computing. The results also demon-

strated that, for data-intensive applications, the recent trend of increasing the number

of cores does not work if I/O is not scaled accordingly.
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