The very extended rotation curve of NGC 3741

Gianfranco Gentile

University of Ghent (Belgium)

P. Salucci, U. Klein, C. Tonini, G. L. Granato

SISSA (Trieste, Italy), University of Bonn (Germany), University of Durham (UK), University of Padua (Italy)

Part 1

Introduction

Part 1: What are rotation curves?

Rotation velocity of gas and/or stars as a function of radius $V_{rot}(r)$: traced via different lines: H α , HI, CO, ...

Part 1: rotation curves from HI data

Rotating disk:

Data cube (series of maps @ slightly different freq.) should look like this:

Part 2

NGC 3741: The most extended rotation curve ever

NGC 3741: dwarf irregular galaxy

HI disk extends out to 42 exponential scale lengths (largest ever!) Very regular/symmetric distribution and kinematics

- First attempt to understand the kinematics: tilted-ring fit on the velocity field:

Kinematical and morphological orientations are different!

- First we fixed geometrical parameters to match total HI:

red: model

black: obs

Part 2: Non-circular motions

• Then, to determine kinematical parameters: harmonic decomposition of the velocity field

(Schoenmakers et al. 1997, Wong, Blitz and Bosma 2004, Gentile et al. 2005)

$$V_{los} = c_0 + \sum_{j=1}^{n} [c_j \cos(j\psi) + s_j \sin(j\psi)]$$

where ψ =azimuthal angle and $c_0 = v_{sys}$ n=1 \rightarrow tilted ring model

 \rightarrow Look at c_i(r) and s_i(r) terms up to j=3

 Then we built model data cubes, based on physical and geometrical parameters:

centre, $V_{rot}(r)$, $V_{rad}(r)$, incl(r), PA(r), etc.

some are refined iteratively.

Automatic fitting: work in progress by our group (Józsa et al. 2007)

- Very good match of observed and model data cubes:

21 18 45°15 21 18 45°15 Declination (J2000) 18 ۰5°-2 18 45°15 11^h36^m0^a 11^h36^m0^s 11^h36^m0^a 11h36m0s Right Ascension (J2000)

red: model black: obs

How do we interpret these non-circular motions?
 s₃ vs. s₁ from harmonic decomposition:

Speculation: inner bar and outer ongoing accretion?

- Burkert halo (central constant density core)
- NFW halo ("cuspy", ACDM prediction) using c-M_{vir} relation
- NFW halo with c and M_{vir} independent parameters
- Power law ($\rho \sim r^{-\alpha}$): ~ average slope over observed radial range
- MOND (Modified Newtonian Dynamics)
 with "standard" interpolation function µ(g/a₀)
- MOND with new $\mu(g/a_0)$ by Famaey & Binney (2005)

Dark matter halo with core fits well

Power-law: $\rho \sim r^{-\alpha}$: $\alpha = 1.1 \pm 0.1 \rightarrow$ Inconsistent with ΛCDM

Navarro et al. (2004)

NFW using c_{vir}-M_{vir} relation fits badly

 M_{sol} , c_{vir} at 2.5 σ from predicted c- M_{vir} relation $M_{vir} = 10^{11}$

Both MOND fits are very good

Part 3

Ongoing work

Gas-rich dwarf galaxies

Sample selection: $M_{HI} / L_B > 2.0$

+ other criteria to have good data (distance, HI flux, dec, inclination, etc.)

Accepted HI proposals:

WSRT: 4 galaxies, each 2 x 12 h - observed in the last few months

VLA: 2 galaxies, 8 h each

- observed in March

HI data from WSRT

Greyscale: optical - Contours: low-res HI (40"x40")

UGCA 105 - model data cubes

High resolution

Model data cubes using Tirific (Józsa et al. 2007)

http://www.astro.uni-bonn.de/~gjozsa/tirific.html

UGCA 105 - model data cubes

Low resolution

UGCA 105: position-velocity diagrams

Red: model - Black: observations

High resolution

PVDs parallel to major axis

UGCA 105: position-velocity diagrams

Low resolution

PVD parallel to major axis

Red: model - Black: observations

UGCA 105: position-velocity diagrams

Anomalous gas: same signature as in NGC 2403 (Fraternali et al.)

See also works by Heald et al.

UGCA 105: total HI map

UGCA 105: total HI map

Red: model - Black: observations

UGCA 105: preliminary mass models

Mass model with dark halo with constant density core

Mass model with halo predicted by ΛCDM

Part 4: Conclusions

• NGC 3741: - the most extended rotation curve ever

- HI data: reproduced with model data cubes
- Cored halo and MOND fit very well
- NFW fits badly for realistic parameters

 Ongoing work: - sample of NGC 3741-like galaxies (very gas-rich, very large HI disk)
 - currently: UGCA 105, ongoing modelling of WSRT data