The Unique 'Message' of Radiopolarimetry

at Low Frequencies

with the WSRT

Information on (components of) magnetic field from

Equipartition argument $\longrightarrow B_{tot}$

Faraday rotation $\longrightarrow B_{//}$ Faraday tomography

(synchrotron) intensity $\longrightarrow B_{\perp}$

The importance of magnetic fields

- link with galactic (gas) dynamics
- M51 I_{tot} $\lambda = 6 \text{ cm}$ **B**-vectors 15 μ
- magnetic pressure often comparable to gas pressure

M51 6cm VLA+Effelsberg Total Int.+B-Vectors + ISO 15r

The importance of magnetic fields

- link with galactic (gas) dynamics e.g. M51
- magnetic pressure often comparable to gas pressure
- coupling with many components of ISM

Some questions

- topology / strength of large-scale field (reversals ?!)
- small-scale vs. large-scale field
- role of magnetic field in turbulence of ISM
- origin and amplification (seed fields dynamo ?)

Faraday tomography

- disentangling (polarized) emission and Faraday rotation
- undoing line-of-sight (depth-) depolarization

Faraday depth $\mathcal{R}(d) = 0.81 \int B_{//}(x) n_e(x) dx \ [d \rightarrow 0]$

polarized emission originating at distance d has its plane of polarization rotated by an angle $\theta(d) = \mathcal{R}(d) \lambda^2$

Observed polarization vector $P_{obs}(\lambda)$ is vector sum (integral) of all infinitesimal polarization vectors $P_{em}(d,\lambda)$ each rotated by their respective $\theta(d)$

With $P_{obs}(\lambda)$ available over wide, well-sampled λ -interval $P_{em}(\mathcal{R})$ (spectrum of Faraday depth) can be recovered

$$P_{em}(\mathcal{R}) \approx FT \{P_{obs}(\lambda^2)\}$$

Faraday-depth spectrum

N.B.

- $\mathcal{R} \neq \mathsf{RM}$ in general
- $\mathcal{R} \xrightarrow{?} n_e(d) \& B_{//}(d)$

Some 'facts-of-life' in Faraday tomography

or
$$\lambda_{max}^2 >>$$
 and $\lambda_{min}^2 / \lambda_{max}^2 <<$
 $\mathcal{R}_{max} >>$ for $\delta \lambda^2 <<$

Low frequency, wide-band, high-resolution polarimetry

With the WSRT

- well-behaved instrumental poln.
- excellent wide-field mapping

Some examples

1

$$\lambda \sim 2 \text{ m}$$
 'Ring' $\Delta \mathcal{R}_{\text{min}} \sim 3 \text{ rad/m}^2$

 $\lambda \sim 2$ -m movie

Low frequency, wide-band, high-resolution polarimetry

With the WSRT

- well-behaved instrumental poln.
- excellent wide-field mapping

Some examples

1. $\lambda \sim 2 \text{ m}$ 'Ring' $\Delta \mathcal{R}_{min} \sim 3 \text{ rad/m}^2$ 2. $\lambda \sim 1 \text{ m}$ 4 mosaics $\Delta \mathcal{R}_{min} \sim 12 \text{ rad/m}^2$ in 2nd gal. quadrant


```
P(\mathcal{R})-spectra
```

Cepheus

R: [-100, 100] P(*R*): 0−4 K

movie of Gemini mosaic

I = 185, b = 20

Summary of movies: $\mathcal{R}(P_{\max})$ as function of position

Low frequency, wide-band, high-resolution polarimetry

With the WSRT

- well-behaved instrumental poln.
- excellent wide-field mapping

Some examples

1. λ ~ 2 m	'Ring'	$\Delta \mathcal{R}_{\min} \sim$	3 rad/m ²
2. λ ~ 1 m	4 mosaics	$\Delta R_{\min} \sim$	12 rad/m ²
in 2 nd gal. quadrant			

Main conclusions

- abundant structure in $P(\mathcal{R})$ spectra \longrightarrow ISM
- $P(\mathcal{R})$ spectra extragalactic point sources and diffuse galactic emission are different \longrightarrow large-scale B-field

Structure of ISM

250

remember:
$$\mathcal{R} \xrightarrow{?} n_e(d) \& B_{//}(d)$$

Use 3-d MHD-simulations to understand $P(\mathcal{R})$ spectra

3-d information can then be used to study the build-up of Faraday-depth in (simulated) ISM

60

Large-scale magnetic-field structure of the Galaxy in 2nd galactic quadrant (combining 4 mosaics with data from literature, like BS)

diffuse and Faraday emission

point sources

Large-scale magnetic-field structure of the Galaxy in 2nd galactic quadrant (combining 4 mosaics with data from literature, like BS)

 $< B_{//} > = \Re(P_{max}) / [0.81 \text{ DM}]$ DM from CL & WHAM

Proposal for systematic low-frequency polarization survey of 2nd galactic quadrant

Previous 4 mosaics at $\lambda \sim 1$ m of 7*7 pointings took about 30 half days

New survey of ~ 100 mosaics of 3^*3 pointings (15 * 7) at ~ half the integration time requires 40 – 60 half days

Optimum specs to be derived from the previous mosaic data

Not centered on 12h & 12-hr runs can be split