WSRT for EVN science: calibration, polarization, and transients

> Zsolt Paragi JIVE

### Why WSRT is important for the EVN

- Facts: with 93m effective diameter, Westerbork is the second most sensitive element of the European VLBI Network
- Loss of sensitivity without the phased array Wb in an EVN run is ~40% in X-band, 20-30% (Jb1/Jb2) in C-band, 50% in L-band
- Could play a unique role in the absolute amplitude calibration and polarization calibration (including circular!)
- But it is true, because of limited FoV (few arcseconds) must use single dish in certain projects

#### WSRT as the key element of e-EVN

One of the first telescopes with fibre connection to JIVE  $\sim$  ~50% of the total e-EVN sensitivity came from Wb in the last few years, making possible sensitive observations!



# Westerbork – e-EVN as a unique instrument

- Synthesis array data analysis of calibrators helps to determine flux scales on EVN maps
- Calibrator integrated polarizations with WSRT allow PA calibration of EVN maps
- Unique instrument to measure accurate circular polarization, and calibrate CP for the EVN
- Could use as a trigger instrument by providing flux measurements on targets prior to e-EVN runs
- Could provide accurate coordinates for e-EVN observations of gamma- (AGILE, GLAST) and X-ray transients (INTEGRAL, Swift ...)

### **Examples: X-ray binaries**





- Cyg X-3 has shown occasional violent bursts in the last two years
- First ever VLBI polarization maps were obtained for a microquasar with the e-EVN in 2006 (Tudose et al. 2007)
- Five more epochs data in 2007 and 2008
- Latest epochs show unusual burst behaviour (apparently no relativistic ejection)
- Besides the wealth of X-ray data, understanding of the various accretion disk states in XRBs will require more radio observations, especially VLBI
- Universal black hole activity plane relations: microquasars help understanding AGN as well
- We need to monitor a large sample of XRBs, WSRT could trigger e-EVN observations based on flux or polarization property changes

4 June 2008

WSRT Users Meeting

## High energy sources: LSI +61 303



- MAGIC, CHANDRA, MERLIN, VLBA, e-EVN campaign in October 2006
  Source is still a mistery, nature of binary unknown (pulsar-wind /microquasar) Albert et al. (2008), Astrophys. J. (accepted), astro-ph/0801.3150
- AGILE and GLAST will provide a number of transients for which WSRT could provide flux measurements and accurate coordinates, that makes VLBI follow-up possible

4 June 2008

WSRT Users Meeting

## Chasing circular polarization



- Accurate CP measurements with VLBI are very challanging, need to observe tens of calibrators...
- WSRT-EVN offers an alternative: a single calibrator is enough for which is calibratoed using WSRT phased array data (linear feeds!!!)
- Example to the left: Algol with the e-EVN, variable CP emission observed during a radio flare
- CP studies are still sparse for AGN and microquasars, but they may help identify the nature of their jets (baryonic/leptonic)
- Little explored area, much to be done here!

# What would Apertif mean to the EVN?

- In the SKA era the number of radio transients detected will increase by orders of magnitude, likely new type of sources will be discovered
- We do not know what to expect exactly, and it is unclear how we will deal with the wealth of data
- VLBI could play a vital role in pinpointing exact locations and help cross-identification with optical counterparts (e.g. GRB/XRF/SNe progenitors)
- VLBI can immediately decide on Galactic nature if source structural evolution is seen on timescales of days
- We need trigger machines for the EVN, like LOFAR and a high FoV WSRT
- A minor point: LOFAR and WSRT with Apertif are operating at low frequencies, while most transients show up first at high frequencies (and time really matters for Galactic transients!)

# More sensitive large FoV EVN imaging (in the L-band)







Phased array WSRT at 18cm could be part of projects requiring large FoVs, e.g. imaging ULXs and SNR in nearby galaxies, gravitational lenses etc.

4 June 2008

#### Looking to the future of the EVN Science example: ULXs now...



EVN could play an important role to constrain ULX black hole masses by radio flux measurements –note that resolution is important to distinguish nebulae from compact-jet emission.

### **ULXs with EVN2015**



■ WSRT has a great contribution to this predicted sensitivity.

## Apertif: yes or no?

Introduction of Apertif will limit EVN capabilities in all bands except for L-band.
 However it could be very useful for supplying triggers to the (e-)EVN

Let us hope for a solution that brings new opportunities, but allows to do a variety of science with the WSRT