WSRT and the EVN

Huib van Langevelde, JIVE director WSRT Users meeting Amersfoort, 4 June 2008

WSRT in the EVN

Role of WSRT in the European VLBI Network

- Direction of development of the EVN
 - e-VLBI happening now!
 - More bandwidth coming next
 - Developments for next decade
- How does the WSRT fit in?
 - And the plans for the WSRT in the future

Phased array corner stone for high sensitivity EVN

- Main selling point of the EVN: BIG telescopes
- Outperforming any other array in pure sensitivity

Reaching the µJy universe

- WSRT in the EVN 69% of experiments in phased array
 - At 6cm and 18cm work-horse frequencies for the EVN
 - Not available at higher frequencies
 - 29% Single dish at 5cm (Methanol)
 - 2% wide-field imaging

- J1427+3312, the most distant known radio loud QSO (z=6.12),
- Observed with 10telescope EVN configuration in 2007, incl WSRT
- 1.6 and 5 GHz 1.4 and 0.8 mJy at L- and Cband, respectively
- Noise level at ≈ 17µJy for both frequencies
- WSRT provided crucial total flux density measurements

Frey, Gurvits, Paragi, Gabanyi, 2008, A&A (issue of 5 June 2008), arXiv:0805.0474

Current bandwidth

- Mk5A disk recording
- Mk5B soon
 - Aiming at 4 Gbps
- Requires 2 x 128 MHz @ 2 bits
- WSRT phased array
 - Dual pol 128 MHz bandwidth
 - With TADU system
 - Limited by WSRT IF system
 - TADU-Max will be fully digital

Revolutionizing VLBI:

e-VLBI now operational, reliable and with full sensitivity

- Effelsberg on-line on 1/4/08
 - •Extremely important for science
 - Boosts the sensitivity
- Routinely running 6 (7) telescopes at 512 Mbps

World-wide e-VLBI

- EC project EXPReS has partners in 6 continents
 - All gave real-time fringes
 - As of last week
- Shows that e-VLBI is feasible on Global scale

Why is e-VLBI exciting for astronomy?

Rapid response for rapid variability

- Fast response to requests
- Immediate analysis of data, adapt observing parameters
- Coordination with current and future observatories
- Immediate feedback
 - More robust data

Fewer consumables, logistics

- Constantly available VLBI network
 - Monitoring: for example astrometry
 - Spacecraft tracking
- Growth path for more bandwidth
 - More sensitive astronomy

e-VLBI policy

- **Required a cultural change** •
 - Peer review process is careful
 - The EVN is a distributed facility
 - The telescopes are involved in other programmes as well
- Policy changes adopted in Nov 2007
- Now e-VLBI is booming in • 2008!
 - Had several e-VLBI runs this year
 - Some use trigger conditions
 - Also 3 epoch ToO observation
 - And big telescopes available

14570

EVN2015 science case

- Has been finalized and distributed
 - Available on the web.
 <u>http://www.evlbi.org/publications/publicati</u>
 <u>ons.html</u>
 - Wide range of science applications
- Some highlights include
 - Nature of starburst/AGN in cosmological fields
 - The fate of black holes/radio quiet AGN
 - Jet physics close to the event horizon (VSOP2)
 - Determining star burst activity, resolving SNR's
 - The nature of the ISM in active galaxies
 - Fundamental distances from astrometry
 - The accretion physics in transient radio sources
 - The detailed 3D kinematics of star formation
 - Pulsar astrometry
 - Monitoring spacecraft in the solar system

10/14

Technology path EVN

- Real-time connected VLBI
 - No doubt here, only thing that sells, SKA pathfinder
 - Transient science, modern users are impatient
 - Buffer system will be required for robustness
- Improved sensitivity by increased bandwidth
 - Requires coordinated upgrade of IF systems
 - And many bit system for RFI robustness
- Much better coverage at high frequency
 - Where the sensitivity matters and can be obtained
 - And frequency flexible, of course
- A different operational model, tighter control
 - Faster, more robust, accurate calibration
- High fidelity images require many telescopes
 - Extend the EVN with new members and new antennas

Technology path correlator

VLBI input changes

- Multiple data streams of 10 100 Gbps
- 32 stations, or at least more than 16
- Multiple bit representation
- High bandwidth at higher frequency

Calls for a hundred fold more powerful correlator

- Compares to EVLA correlator
- Similar size as some (other) SKA pathfinders
- Probably needs FPGA based solution
 - Software correlators can be intermediate solution
- Allowing for some specific applications
 - Spectral line, requires much better mixed bandwidth facilities
 - Pulsar gating
 - Atmospheric calibration
 - Multiple beam VLBI

Future of radio-astronomy

- Community is preparing to build the SKA
 - And is constructing a number of SKA pathfinders
 - LOFAR will open up the transient radio-sky
 - · e-MERLIN will probe new regime in sensitivity
 - Includes the e-EVN, exercising long-range connectivity
- Changing priorities: a challenge and an opportunity
 - Must concentrate on very specific science case
 - Long, Very Long Baselines, Northern hemisphere
 - Take advantage of technology investments
 - Correlators, connectivity, data acquisition
 - But possibly also receptors

Maintaining the distributed expertise is vital for SKA

- European radio-astronomy must develop a single roadmap
- I think there will be a strong case for Europe based telescopes: LOFAR, VLBI
 - Training of future radio-astronomy users
 - Technology development, evaluation
 - Outreach: visit a telescope near you!

Future WSRT in the future EVN

- Current: Important collecting area at 18cm & 6cm
 - BUT: limited bandwidth to follow EVN upgrades
 - Hard to beat sheer collecting area
 - In fact difficult at 18cm where bandwidth is limited anyway
 - Limited lifetime?

• APERTIF: would loose 6cm phased array capability

- Assume a single MFFE antenna would remain for frequency coverage
- BUT: potentially gain 21cm bandwidth?
 - Synergy with next generation correlator
 - Extend lifetime of the WSRT operations for VLBI?
 - Single antenna upgradeable to wider bandwidth?
- BUT APERTIF: would loose 6cm phased array capability (repeat)
- Long term future: coverage of higher frequencies
 - For example: cluster of small high frequency antennas

