The prospects of a focal-plane array at the WSRT

Tom Oosterloo Wim van Cappellen

This presentation

- Why this talk?
- Description of Apertif
- Options
- Performance
- Science with Apertif
- Impact on current WSRT science
- Other issues

Possible upgrade to the WSRT: Apertif

- focal-plane arrays
- Increase bandwidth to 300 MHz (\geq 16000 channels, \leq 8 km s⁻¹)
- L band only (1000-1700 MHz)
- WSRT will become survey instrument (SKA pathfinder). Survey speed ~20 times that of WSRT. what you now do in a year, with Apertif you do in a few weeks
- Also single-dish modes are interesting
- A lot of what of what the WSRT is being used for now will not be possible anymore
- Relevant for (future) role of Astron (and the Netherlands) in SKA
- Aim of this talk: start discussion in the community about whether we should do this. And if so: how

• Under consideration: enlarge field of view of WSRT by large factor (25) by replacing single-pixel feeds by

How to make a large FoV?

- Replace single-pixel detector with array of detectors and turn dish into a camera
- Form many beams on the sky
- Image each beam

Prototype in RT5

Each element is looking to another part of the sky

Optimal beam forming

Difference with classic multifeeds:

- Dense sampling of focal plane beam overlap on the sky
- Can optimise beam in a given direction
- Can do this multiple times

Each panel 3° x 3° Element patterns on sky

Optimal beam forming

Difference with classic multifeeds:

- Dense sampling of focal plane beam overlap on the sky
- Can optimise beam in a given direction
- Can do this multiple times

Focal plane + elements

Each panel 3° x 3° Element patterns on sky

Apertif: APERture Tile In Focus

Receptor array in each WSRT dish

	Apertif	WSR
82	x8 (x2) elements	1 (x2
25	beams on the sky	、 1
v: 1	000 – 1700 MHz	117 – 865
T _{sys,21} :	50 K	30 k
Δv :	300 MHz	160 M
A _{eff:}	75%	55%

Survey speed increases by factor 18-24

	MeerKat	Apertif	ASKAP	WSRT
A/T	3	1	0.5	1
FoV	3	25	120	1
Survey speed	25	20	80	1

2)

50 MHz IHz

First images with prototype

M31

Demonstrated feasibility

Options

- S M€ available for frontends
- Original plans are slightly too expensive
- Fewer dishes or less bandwidth
- To lower frequencies? will cost >0.5 M€ for better analog system, higher T_{sys}

<i>N</i> dish	N _{beams}	Δv [MHz]	Noise line	Noise cont	Sspeed	Cost per dish	Total cost
MFFE	1	160	1	1	1		
14	25	160	1.39	1.39	12.9	€216743	€3034402
12	25	300	1.64	1.20	17.7	€262484	€3149808
14	25	300	1.39	1.01	24.1	€262484	€3674776

Ast	tro	no	my

Performace: Line

- Apertif will double or triple integration times
- ▶ Resolution ~8 km s⁻¹, better (factor 4?) seems feasible
- $10^9 M_{\odot}$ detectable out to z=0.04 (MFFE z=0.05) in single 12 hr
- $5 \times 10^9 M_{\odot}$ detectable out to z=0.08 (MFFE z=0.10) in single 12 hr
- With 10x12 hr good overlap with SDSS spectroscopic galaxies
- A single 12 hr observation will detect ~200 galaxies
- 10x12 hr will detect ~1000 galaxies
- Large survey will give few x 10⁵ detections

Performance: continuum

- With 300 MHz band, continuum sensitivity will be more or less that of the current WSRT 15-20 µJy beam⁻¹ after 12 h
- Continuum images of deep H I observations will be confusion limited in Stokes I
- Continuum survey will >30 times deeper than NVSS
- Such a survey could give few x 10⁶ detections

Morganti et al. 8 µJy beam⁻¹ noise

Science: HI

- Major new opportunity: can image the entire sky at high resolution, high sensitivity and out to large (for H I standards) distances
- Current state: we know about the H I of few x10⁴ galaxies, almost all with 'resolution' of 5-15 arcminutes, ~ 100 above z = 0.1
- Apertif: few x10⁵ galaxies, out to $z \sim 0.2$, with 15 arcsec resolution, many above z = 0.1
- Start to address evolution of H I & connection with evolution of star formation. Relation with environment, type, etc etc. Overlap with SDSS
- Combine with Local Volume & low-mass end of H I mass function: down to few x $10^5 M_{\odot}$. Dark galaxies???

Single-dish mode: 21-cm Intensity Field: cosmic structure on very large (>100 kpc) scales

Science: continuum

- Large-area survey, >30 times deeper than NVSS, few million detections
- Complement to Lofar
- Many of the detections will be star forming galaxies at intermediate redshift: fits nicely with HI survey

Science: magnetism

- Rotation Measure Grid with spacing ~10 arcminutes Galactic magnetic field
- Apertif could do 800-1300 MHz

RM synthesis of many many nearby galaxies 300 MHz: 94 rad m⁻² FWHM 700 MHz: 59 rad m⁻² FWHM (SINGS 144 rad m⁻² with strong sidelobes)

Single dish: Global Magneto-Ionic Medium Survey (GMIMS): all-sky full polarisation from 300 to 1800 MHz

Science: pulsars

- Apertif+WSRT is very efficient pulsar machine Can use field of view of primary beam to find pulsars
- Thousands of new pulsars!!!!

WSRT 8gr8 mode:

8 bands form 8 sets of repeating fan beams cover primary beam Earth rotations lets them intersect to determine location

If Apertif has the right backend, this can be done over 7 degree²

Science: transients

- ▶ Fly's eye mode: 12 (14) x 25 beams on the sky: can cover (>)75 deg² in one observation
- Detect 1 "Lorimer burst" every few weeks...

7°.5

What is lost?

- Solutions? Questions to you: How bad is this?
- If you want to say something about this: speak up!!!
- Important for context: long term future (>2012) of WSRT not secure
- Option: Apertif on 12 dishes, 2 keep MFFE

Because Apertif only works in L band: current observations in other bands will not be possible anymore

Alternatives?

What is lost: pulsars

• WSRT timing is done at 92 cm. Sardinia can take over?

What is lost: VLBI

- Lose 6-cm phased array main problem
- Only 2 dishes available for VLBI at non L band?
- Things will have to change, regardless of Apertif

What is lost: deep H I

- Deepest H I observations ever done are with WSRT (20-100 x 12 hr) Currently niche application of WSRT
- EVLA will not do really better, current WSRT results will last until 10% SKA

What is lost: Lofar related observations

- WSRT not available for non L-band Lofar follow up
- EVLA, but...

AST(RON Netherlands Institute for Radio Astronom

Open issues

- Money: no money yet for correlator & backends. Combine with e-VLBI, Lofar???
- How will time on WSRT+Apertif be allocated?
- Who will do the surveys: Keyprojects? (like Lofar?), or Legacy mode?, or ... ?
- If Apertif will be installed: what has to be observed with MFFEs before Apertif?
- Future of WSRT if Apertif will not happen?

European context?