Skip to main content
ASTRON logo

Telescopes

ASTRON is responsible for the operations of the Westerbork Synthesis Radio Telescope (WSRT) and the Low Frequency Array (LOFAR).

Astronomy

The astronomical research at ASTRON is closely aligned with the strengths of our facilities LOFAR and WSRT-APERTIF.

Diversity & Sustainability

ASTRON is committed to achieving a fair, welcoming, and sustainable work environment for all.

Beschermingszones


Met onze radiotelescopen nemen wij de meest zwakke signalen uit het heelal waar. Daardoor zijn zij kwetsbaar voor elektromagnetische storing. Met het tijdig treffen van de juiste maatregelen kan storing worden voorkomen.

Wireless Data Lab


Draadloze techniek lijkt vanzelfsprekend, maar de ontwikkeling ervan gaat niet vanzelf. Daarom hebben we bij ASTRON een proeftuin ingericht; het Wireless Data Lab.

Making discoveries
in radio astronomy
happen.

ASTRON is the Netherlands Institute for Radio Astronomy, and is part of the Institutes organisation of NWO.
STORIES

New Technology for Ultra-Fast Data Transfer: SURF and ASTRON Establish 400G Connection

SURF and ASTRON have implemented the OpenZR+ technology to establish a 400G network connection, significantly enhancing scientific research in the Netherlands.

LOFAR
News
Published by the editorial team, 20 February 2025

Astronomers Astonished: Enigmatic Distant Radio Bursts Appear to be Neutron Stars

Using the radio telescope at Westerbork, The Netherlands, astronomers have discovered two dozen of the unexplained Fast Radio Bursts. After zooming in on the signal of the distant bursts, the astronomers found a striking similarity to the radio flashes emitted by nearby, known neutron stars. The discovery is remarkable because these nearby neutron stars already produce more energy than anything achievable on Earth. The distant stars that emit the Fast Radio Bursts must somehow generate an astounding one billion times more energy than the nearby ones.

Astronomy
News
Science
WSRT-APERTIF
Published by the editorial team, 23 January 2025

European Pulsar Timing Array Wins Two Prestigious Awards

The European Pulsar Timing Array (EPTA) has been honored with two major awards for its groundbreaking work in gravitational wave astronomy. In 2024, the team received the International Congress of Basic Sciences (ICBS) Frontiers of Science Award in China, followed by the Royal Astronomical Society (RAS) Group Achievement Award in the United Kingdom in 2025.These accolades celebrate the team’s innovative use of pulsar timing to detect low-frequency gravitational waves. The EPTA is a collaborative effort involving scientists from more than ten institutions across Europe. ASTRON is one of the participating organisations in this project with its most sensitive radio telescope including the Westerbork Synthesis Radio Telescope. (WSRT).

Astronomy
News
Science
WSRT-APERTIF
Published by the editorial team, 16 January 2025

Roelien Attema named as Netherlands Academy of Engineering Fellow

ASTRON’s head of the Innovation & Systems department, Roelien Attema, has been named as one of the ten new Fellows of the Netherlands Academy of Engineering (NAE). The appointment recognises her outstanding achievements in technology valorisation and visionary leadership in research and development.

News
Published by the editorial team, 12 December 2024
DAILY IMAGE

Colloquium: Classical Be stars - Constraining interaction physics of massive stars

© Julia Bodensteiner

Massive stars are cosmic engines. Like chemical factories, they produce key elements, they are progenitors of supernovae, neutron stars and black holes, and they play a crucial role in the formation and evolution of galaxies. Given their prevalence in binary systems, at the end of their lives they may produce double-compact objects, which are potential gravitational-wave sources. During their life cycles, interactions with their companion stars can drastically alter the evolution of both stars. Yet, the complex interaction physics as well as the outcome of the interactions remain poorly understood.

One way of constraining those is by observing post-interaction binaries. A century-old question in the context of massive stars addresses the Be phenomenon, which occurs in ~20% of the early-type stars. Observationally, classical OeBe stars are defined as OB-type stars with line emission, indicative of a circumstellar disk, which strongly correlates with rapid rotation of the stars. While the processes that lead to such high rotation rates are still widely debated, classical Be stars were proposed to be mass gainers in previous binary interactions. If true, that would make them post-interaction binaries with stripped-star or compact-object companions.

In my talk, I will discuss the different channels proposed for the formation of classical Be stars, with a particular focus on the binary channel. I will present observational evidence suggesting that the binary channel is indeed predominant in the formation of massive Be stars, and will show that the few known Be binaries are exotic systems with stripped or compact companions. I will furthermore discuss what those systems can teach us about binary interaction physics and thus about massive-star evolution in general.

ASTRON daily image.
EVENTS

CASPER Workshop 2025

Mon 08 Sep 2025 - Fri 12 Sep 2025

The CASPER workshop is a semi-annual workshop where FPGA, GPU, and general heterogeneous system programmers get together to discuss new instruments in radio astronomy, as well as the tools and libraries for developing and manipulating these instruments.

@astron

Subscribe to our newsletter. For previous editions, click here.

searchclosechevron-downlinkedin-squarebarsyoutube-playinstagramfacebook-officialcross