
2025-07-05 06:01 1/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

DPPP

DPPP (the Default Preprocessing Pipeline, previously NDPPP for New Preprocessing Pipeline) is the
LOFAR data pipelined processing program. It can be used to do all kind of operations on the data in a
pipelined way, so the data are read and written only once.

DPPP started as a new and faster version of IDPPP. The original differences can be seen here.

DPPP preprocesses the data of a LOFAR observation by executing steps like flagging or averaging.
Such steps can be used for the raw data as well as the calibrated data by defining the data column to
use. One or more of the following steps can be defined as a pipeline. DPPP has an implicit input and
output step. It is also possible to have intermediate output steps.

DPPP comes with quite some predefined steps, but it is possible to plugin arbitrary steps, either
implemented in C++ or Python.

The following steps are possible:

Flagging and Filtering
AOFlagger for automatic flagging in time/freq windows using Andre Offringa's advanced
aoflagger.
Preflagger to flag given baselines, time slots, etc.
UVWFlagger to flag based on UVW coordinates, possibly in the direction of another
source.
MADFlagger for automatic flagging in time/freq windows based on median filtering.
Filter to filter on baseline and/or channel (only the given baselines/channels are kept).
The reader step has an implicit filter.

Averaging
Averager to average data in time and/or freq.

Phase Shifting
PhaseShift to shift data to another phase center.

Demixing to remove strong sources (A-team) from the data.
Demixer to demix in the old way.
SmartDemixer to demix in a new, smarter way.

Station summation
StationAdder to add stations (usually the superterp stations) forming new station(s) and
baselines.

Counter to count the number of flags per baseline, frequency, and correlation. A flagging step
also counts how many visibilities it flagged. Counts can be saved to a table to be plotted later
using function plotflags in python module lofar.dppp.
Data calibration and Data scaling

ApplyCal to apply an existing calibration to a MeasurementSet.
GainCal to calibrate gains using StefCal.
DDECal to calibrate direction dependent gains.
Predict to predict the visibilities of a given sky model.
H5ParmPredict to predict visibilities corrupted by an instrument model (in H5Parm)
ApplyBeam to apply the LOFAR beam model, or the inverse of it.
ScaleData to scale the data with a polynomial in frequency (based on SEFD of LOFAR
stations).
Upsample to upsample visibilities in time
Out to add intermediate output steps

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:tools:dppp:diff


Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

startInterpolate]] for improving the accuracy of data averaging. * User defined steps
provide a plugin mechanism for arbitrary steps implemented in C++. * Python defined
steps provide a plugin mechanism for arbitrary steps implemented in Python. The
input is one or more (regularly shaped) MeasurementSets (MSs). The data in the
given column are piped through the steps defined in the parset file and finally
written (if needed). It makes it possible to, say, flag at the full resolution, average,
flag on a lower resolution, average further, and finally write the data.
Regularly shaped means that all time slots in the MS must contain the same
baselines and channels. DPPP can handle only one spectral window. If the MS has
multiple spectral windows, one has to be selected. If multiple MSs are given as input,
their data are combined in frequency. It means that the time, phase direction, etc. of
the different MSs have to be the same. Note that other steps (like averaging) can
still be used.
When combining MSs (thus combining subbands), it is possible that one or more of
them do not exist. Flagged data will be inserted for them. The missing frequency info
is deduced from the other subbands. Note that in order to insert missing subbands in
the data, the names of the missing MSs have to be given at the right place in the list
of MS names. Otherwise DPPP does not know that subbands are missing. The output
can be a new MeasurementSet, but it is also possible to update the flags if the input
is a single MS. If averaging or phase-shifting to another phase center is done, the
only option is to create a new MeasurementSet. At the end the run time is shown.
Note that on a multi-core machine the user time can exceed the elapsed time (user
time is counted per core). By default the percentage of time each step took is also
shown. The AOFlagger, MADFlagger, and Demixer, by far the most expensive parts of
DPPP, can run multi-threaded if DPPP is built with OpenMP. It is possible to define
the number of threads to use by the global key numthreads. Is that is not set, it uses
the environment variable OMP_NUM_THREADS. If also that variable is undefined, an
DPPP run uses as many threads as there are CPU cores. Thus if multiple DPPP runs
are started on a machine, the default total number of threads will exceed the
number of CPU cores. === MeasurementSet Access === * The 'msin' step defines
which MS and which DATA column to use. It is possible to specify multiple MSs using
a glob-pattern or a vector of MS names. * If multiple MSs are given, they will be
concatenated in frequency. It means that all MSs must have the same times,
baselines, etc. Flagged data can be inserted for MSs that are specified, but do not
exist. * It is possible to select baselines and/or a band (spectral window) and/or skip
leading or trailing channels. This is the same for each input MS. * Optionally proper
weights can be calculated using the auto-correlation data. * It sets flags for invalid
data (NaN or infinite). * Dummy, fully flagged data with correct UVW coordinates will
be inserted for missing time slots in the MS. This can only be done if a single input
MS is used. * Missing time slots at the beginning or end of the MS can be detected by
giving the correct start and end time. This is particularly useful for the imaging
pipeline where BBS requires that the MSs of all subbands of an observation have the
same time slots. When updating an MS, those inserted slots are temporary and not
put back into the MS. * The 'msout' step step defines the output. If a band is
selected, the output MS (including its SPECTRAL_WINDOW subtable) contains that
band only (its id is 0).
The input MS is updated if no output name is given or if the output name is equal to
the input name or equal to a dot. The calculation of the weights is done as follows.
<code> Weight[ANT1_POL1, ANT2_POL2] = N / (autocorr[ANT1_POL1] *
autocorr[ANT2_POL2]) N = EXPOSURE * CHAN_WIDTH * WGHT </code> where WGHT



2025-07-05 06:01 3/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

is the weight put in by RTCP (number of samples used / total number of samples).
This note discusses weighting in some more detail. === Flagging === It is important
to realize that a MeasurementSet contains columns FLAG and FLAG_ROW to indicate
if data are flagged. If FLAG_ROW is set, all data in that row are flagged. DPPP will set
FLAG_ROW if all FLAG are set (and vice-versa).
When clearing the flags manually, it is important to realize that both columns have
to be cleared. For example: <code> taql 'update my.ms set FLAG=F, FLAG_ROW=F'
</code> DPPP flagging behaviour is as follows. * If one correlation is flagged, all
correlations will be flagged (e.g. XX,YX,YY are flagged if XY is flagged). * The msin
step flags data containing NaNs or infinite numbers or if FLAG_ROW is set. * An
AOFlagger step can be used to flag using Andre Offringa's rficonsole code. Because
DPPP always reads entire time slots, the flagging can be done on limited time
windows only (depending on the available memory). An overlap can be defined to
reduce boundary effects.
By default QUALITY subtables will be created containing statistical flagging quality
information. They can be inspected using tools like aoqplot.
The default strategy works well for HBA data, but not for LBA data. The strategy
LBAdefault should be used for it. * A Preflagger step can be used to flag (or unflag)
on time, baseline, elevation, azimuth, simple uv-distance, channel, frequency,
amplitude, phase, real, and imaginary. Multiple values (or ranges) can be given for
one or more of those keywords. A keyword matches if the data matches one of the
values. The results of all given keywords are AND-ed. For example, only data
matching given channels and baselines are flagged.
Keywords can be grouped in a set making it a single (super) keyword. Such sets can
be OR-ed or AND-ed. It makes it possible to flag, for example, channel 1-4 for
baseline A and channel 34-36 for baseline B. Here it is explained in a bit more detail.
* A UVWFlagger step can be used to flag on UVW coordinates in meters and/or
wavelengths. It is possible to base the UVW coordinates on a given phase center. If
no phase center is given, the UVW coordinates in the input MS are used. * A
MADFlagger step can be used to flag on the amplitudes of the data. It flags based on
the median of the absolute difference of the amplitudes and the median of the
amplitudes. It uses a running median with a box of the given size (number of
channels and time slots). It is a rather expensive flagging method with usually good
results.
The flagging parameters can be given as an expression to make them dependent on
baseline length.
It is possible to specify which correlations to use in the MADFlagger. Flagging on XX
only, can save a factor 4 in performance.
Furthermore it is possible to only flag the auto-correlations and apply the results to
the cross-correlations with a baseline length within optionally given limits. ===
Averaging === * Unflagged visibility data are averaged in frequency and/or time
taking the weights into account. New weights are calculated as the sum of the old
weights.
Some older LOFAR MSs have weight 0 for unflagged data points. These weights are
set to 1. * The UVW coordinates are also averaged (not recalculated). * It fills the
new column LOFAR_FULL_RES_FLAG with the flags at the original resolution for the
channels selected from the input MS. It can be used by BBS to deal with bandwidth
and time smearing. * Averaging in frequency requires that the average factor fits
integrally. E.g. one cannot average every 5 channels when having 256 channels. *
When averaging in time, dummy time slots will be inserted for the ones missing at
the end. In that way the output MeasurementSet is still regular in time. * An

https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=public:user_software:documentation:ndppp_weights.pdf
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:tools:dppp:preflaggerandor


Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

averaged point can be flagged if too few unflagged input points were available ===
Demixing === Demixing (or Smart Demixing explained below) is a faster and more
flexible way of the old demixing python script to demix and subtract strong sources
(A-team). Jones matrices can be estimated for the direction of the subtract-sources,
model-sources, and the optional target-source. * It is possible to have different
averaging for the demix and subtract step. * Selected (e.g. shorter) baselines can be
demixed (others will be averaged only). By default only the cross-correlations are
used. * Four different direction types can be given: * The subtract-sources are
subtracted from the data. They must have a source model. * The model-sources can
be given to take the contribution of other strong sources into account when solving
for the gains. They must have a source model as well. The target source should NOT
be part of this list. * The other-sources directions are taken into account when
demixing. They are projected away when solving for the gains. * If the target source
is given, it must have a source model and no other-sources can be given. If no target
source is given, the target direction can be projected away like the extra-sources.
Weak target sources should not be projected away. * A source model mentioned
above is the patch name in the SourceDB (e.g. CasA). At the moment only point and
Gaussian sources are supported. The direction used for demixing is the centroid of
the sources that belong to the patch. The direction for an extra source (for which no
model is used) can be given as a parameter if that is needed. * It is important to note
that the target source model must NOT be given using the subtract-sources or
model-sources. If it has to be used, give it using the targetsource parameter. * The
Jones matrices will be estimated jointly for all directions, so better results are
expected if the sources are close to the target. However, joint estimation of the
Jones matrices for all directions is slower than estimating the Jones matrices for each
direction separately. In the near future an option will be added to estimate the Jones
matrices for each direction separately like the old demixing script is doing. ===
Smart Demixing === Smart Demixing does demixing as above, but in a smarter way
using a scheme developed by Reinout van Weeren. For each time chunk (say 2
minutes) it is decided how to demix. It needs three source models, which are made
from a text file using makesourcedb. Note that for performance it is best to run
makesourcedb with parameter outtype=blob. * A detailed model of the A-team
sources used in the solve and subtract steps. * A coarse model of the A-team sources
used in the estimate step. If not given, the detailed model will be used. * A model of
the target field. Usually the user can create it from the GSM using gsm.py. Smart
demixing works as follows: * If an A-team source is at about the same position as a
source in the target model, the source is removed from the A-team list and its
detailed model replaces the source in the target model used in the solve step (not
for the estimate step). * Using the coarse A-team model, the visibilities are
estimated per baseline for each A-team source. By default the beam model is applied
to get the apparent visibilities. The sources and baselines are selected for which the
maximum amplitude exceeds a given threshold. A source/station will be solved for if
the station appears in at least N of the selected baselines for that source. A detailed
source model is used in that step to get as accurate gains as possible. * The
visibilities of the target are estimated in a similar way using the target model. The
target is included in the solve if its maximum amplitude exceeds a threshold or if the
amplitude ratio Target/Ateam exceeds a threshold. The target is also included if it is
close to an A-team source and the ratio exceeds another (smaller) threshold.
Otherwise, the target is ignored (if close) or deprojected. A detailed decision tree
that the smart demixing algorithm follows is available here. When solving for the

https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:makesourcedb
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:gsm.py
https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=engineering:software:tools:demixchart.pdf


2025-07-05 06:01 5/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

complex gains of the selected A-team sources, the detailed A-team model is used to
get the correct gains. Note that by default the sources/stations not solved for are
still used in the solve step. There Jones matrices will have a small gain value on the
diagonal and zeroes for the off-diagonal values. At the end a log is produced showing
how the demixing behaved. It shows: * percentage of converged solves and the
average number of iterations used for them. * percentage of times the target was
included, deprojected, and ignored. * percentage of times a source/station was
solved for (thus matched the threshold/ratio criteria). * average and standard
deviation of percentage amplitude subtracted per source per baseline === Phase
shifting === * Data can be shifted to another phase center. * A shift step can shift
back to the original phase center (by giving an empty center). If that is done by the
last shift step, no new MS needs to be created. === Upsample === * Upsampling
data can be useful for at least one use case. Consider data that has been integrated
for two seconds, by a correlator (the AARTFAAC correlator) that sometimes misses
one second of data. The times of the visibilities will then look like [0, 2, 4, 7, 9, 12],
each having integration time 2 seconds. DPPP will automatically fill missing time
slots, which will lead to times [0, 2, 4, 6, 7, 9, 11, 12]. This is still a nonuniform time
coverage, which is not desirable. Calling the upsample step with timestep=2 on this
data will create times [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] (it will remove the
inserted dummy time slots that overlap, i.e. at 7 and 12). This data is then useful for
further processing, e.g. averaging to 10 seconds. === Station summation === * One
or more new stations can be defined from a list of existing stations. An existing
station can occur in only one new station. * The data of baselines containing only one
of the stations are added to form a new baseline. * Optionally the auto-correlations
can be added to form a new auto-correlation 'baseline'. * The data can be added with
or without weight. * Optionally averaging instead of summing can be done. === Data
scaling === * The data can be scaled with a polynomial in frequency to correct for
the SEFD of the LOFAR stations. * The default coefficients have been determined
empirically. It is possible to specify them per station. * It can take the number of
used dipoles/tiles into account when scaling (e.g. for remote/international or for
failing ones). === Filtering === * Similar to the msin step a filter makes it possible
to keep only the given channels and/or baselines. * By default, a station is always
kept in the ANTENNA table, even if all its baselines are removed. This can be
changed with the key remove. === Flag statistics and plotting === Several steps
show statistics about flagged data points. * A MADFlagger and AOFlagger step show
the percentage of visibilities flagged by that flagging step. It shows: * The
percentages per baseline and per station. * The percentages per channel. * The
number of flagged points per correlation, i.e. which correlation triggered the
flagging. This may help in determining which correlations to use in the MADFlagger.
* A UVWFlagger and PreFlagger step show the percentage of visibilities flagged by
that flagging step. It shows percentages per baseline and per channel. * The msin
step shows the number of visibilities flagged because they contain a NaN or infinite
value. It is shown which correlation triggered the flagging, so usually only the first
correlation is really counted. * A Counter step can be used to count and show the
number of flagged visibilities. Such a step can be inserted at any point to show the
cumulative number of flagged visibilities. For example, it can be defined as the first
and last step to know how many visibilities have been flagged in total by the various
steps. * Each step giving flagging percentages can save the percentages per
frequency and per station to a table. The extension .flagfreq is used for the table
containing the flags per frequency; the extension .flagstat for the flags per
station. The full basename of the table is the main part of the MS followed by



Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

_<stepname> followed by the extension. The path for these tables can be specified in
the parset file. * The plotflags function in the Python module lofar.dppp can be
used to plot those tables. It can plot multiple subbands by giving it a list of table
names. The flags per station will be averaged for those subbands. === Intermediate
output step === The step out can write data to disk at an intermediate stage. It
takes the same arguments as the 'msout' step. As an example, the following
reduction will flag, save flagged data at high resolution, then average and save the
result in another measurement set. On the averaged data, it will also apply a
calibration table and save that in the CORRECTED_DATA column. <code>
msin=L123.MS steps=[aoflag,out1,average,out2,applycal] # Write out flagged data
at full resolution out1.type=out out1.name=L123-flagged.MS average.timestep=4 #
Write out averaged data out2.type=out out2.name=L123-averaged.MS
out2.datacolumn=DATA applycal.parmdb=instrument.parmdb # Write the corrected
data to CORRECTED_DATA msout=L123-averaged.MS
msout.datacolumn=CORRECTED_DATA </code> === User defined step === Besides
the predefined DPPP steps like AOFlagger, etc., it is possible to use any user-defined
DPPP step implemented in C++ or Python. If implemented in C++ such a step has to
reside in a shared library, that will dynamically be loaded by DPPP. The name of such
a shared library has to be the step type name. DPPP will try to load the library
libdppp_xxx.so (or .dylib on OS-X) for a step type xxx. To make this a bit more
flexible it is possible to define multiple steps in a single shared library. In such a
case the step type name has to consist of 2 parts separated by a dot. The first part is
the library name, the second part the step type in that library. For example: <code>
steps=[averager, mystep1, mystep2] mystep1.type = mystep.stepa mystep2.type =
mystep.stepb </code> defines two user steps. Both step implementations reside in
library libmystep.so.
A description and example of a dynamically loaded step can be found in the LOFAR
source code repository in LOFAR/CEP/DPPP/TestDyDPPP. === Python defined step
=== The mechanism described above is used to make it possible to implement a user
step in Python. The step type has to be pythoDPPP and the name of the Python
module and class containing the code have to be given. DPPP will load the library
libdppp_pythonDPPP.so, which will start an embedded Python shell, load the
module, and instantiate an object of the class.
A detailed description is available. ===== ParSet File ===== Similar to most LOFAR
programs, the parameters for the DPPP program are given in a so-called parset file.
Note that it is possible to add parameters or overwrite parameters, defined in the
parset file, using command line arguments. For example: <code> DPPP DPPP.pset
parm1=value1 parm2=value2 … </code> The steps to perform have to be defined in
the parset file. They are executed in the given order, where the data are piped from
one step to the other until all data are processed. Each step has a name to be used
thereafter as a prefix in the keyword names specifying the type and parameters of
the step. The most basic parset is as follows. It copies the DATA column of the MS
and flags NaN and infinite data. <code> msin = ~/SB0.MS msout = SB0_DPPP.MS
steps=[] </code> The following example is more elaborate. It flags (using a median
flagger), averages all channels, flags the result of the average, and finally averages
in time.
Note that 'msin' and 'msout' can be seen as an implicit first and last step. <code>
msin = ~/SB0.MS msin.startchan = 8 msin.nchan = 240 msin.datacolumn = DATA # is
the default msout = “SB0_DPPP.MS” # if empty, the input MS is updated and # no
averaging steps can be done msout.datacolumn = DATA # is the default steps =

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:tools:dppp:pythonstep


2025-07-05 06:01 7/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

[flag1,count,avg1,flag2,avg2,count] flag1.type=madflagger flag1.threshold=1
flag1.freqwindow=31 flag1.timewindow=5 flag1.correlations=[0,3] # only flag on XX
and YY flag1.count.save = true # save flag percentages flag1.count.path = $HOME #
to a table in $HOME avg1.type = average avg1.freqstep = 240 avg1.timestep = 1 # is
the default flag2.type=madflagger flag2.threshold=2 flag2.timewindow=51
avg2.type = average avg2.timestep = 5 </code> Plotting the flag percentages, saved
by the first MADFlagger step, could be done in python like: <code> import lofar.dppp
as ld ld.plotflags ('$HOME/SB0_flag1.flagfreq') # step name was flag1 </code>
===== Description of all parameters ===== The parameters in the parset are
divided into several groups like input (msin), output (msout), madflagger, average,
preflagger, and uvwflagger. Because multiple flagging and averaging steps can be
specified, their parameters have to be prefixed with the step name as shown in the
example above. ^ Parameter ^ type ^ default ^ description ^ ||||| ^General |||| |
steps | string vector | | Names of the steps to perform. Each step has to be defined
using the step name as a prefix.
The step type parameter defines the type of step (averager, madflagger, preflagger,
uvwflagger, counter). The step type defaults to the name of the step, which is
especially handy for count steps.
msin and msout are implicit steps which should not be given here.
An empty vector [] means that the input MS is copied to the output MS while
flagging NaN and infinite numbers.
Note that a step name can be used more than once meaning that the same step will
be executed multiple times (e.g., multiple times count). | | numthreads | int |
${OMP_NUM_THREADS} | Maximum number of threads to use. | | showprogress | bool
| true | Show a progress bar? | | showcounts | bool | true | Show flagging statistics? | |
showtimings | bool | true | At the end the percentage of elapsed time each step took
can be shown; the overall time is always shown. | | checkparset | integer | 0 | What to
do if parameters in the ParSet file are not used.
-1 means ignore.
0 means give a warning showing those parameters. In this way misspelled
parameters can be detected.
1 means give an error and stop.
For backward compatibility False (0) and True (1) can also be given. | | uselogger |
bool | false | If false, all DPPP messages are written on stdout. If true, the logging
framework is used. | ===Counter=== | <step>.type | string | | Case-insensitive step
type; must be 'counter' (or 'count').
Note that the type defaults to the step name, so if step name count is used, nothing
more needs to be specified. | | <step>.showfullyflagged | bool | false | If true, all fully
flagged baselines are shown in the baseline selection format using their antenna
indices (not names). For example: 0&1; 3&7 | | <step>.save | bool | false | If true, the
flag percentages per frequency are saved to a table with extension .flagfreq and
percentages per station to a table with extension .flagstat. The basename of the
table is the MS name (without extension) followed by the stepname and extension. |
| <step>.path | string | “” | The directory where to create the flag percentages table.
If empty, the path of the input MS is used. | | <step>.warnperc | double | 0 | If > 0,
print an extra message for each baseline or channel with a percentage flagged
higher than this value. Such a message line can be easily grep-ed. | | <step>.flagdata
| bool | false | If COUNT is the only step in an DPPP run, the data won't be read, so
unflagged invalid data (NaN. infinite) won't be noticed and counted as flagged.
Setting this flag forces DPPP to read and check the data. | ==== Input ==== | msin
msin.name | string | | Name of the input MeasurementSets. If a single name is given,



Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

it can be a glob-pattern (like L23456_SAP000_SB*) meaning that all MSs matching
the pattern will be used. A glob-pattern can contain *, ?, [], and {} pattern
characters (as used in bash).
If multiple MSs are to be used, their data are concatenated in frequency, thus
multiple subbands are combined to a single band. In principle all MSs should exist,
but if 'missingdata=true' and 'orderms=false' flagged zero data will be inserted for
missing MS(s) and their frequency info will be deduced from the other MSs. | |
msin.sort | bool | false | Does the MS need to be sorted in TIME order? | |
msin.orderms | bool | true | Do the MSs need to be ordered on frequency? If true, all
MSs must exist, otherwise they cannot be ordered. If false, the MSs must be given in
order of frequency. | | msin.missingdata | bool | false | true = it is allowed that a data
column in an MS does not exist. In that case its data will be 0 and flagged. It can be
useful if the CORRECTED_DATA of subbands are combined, but a BBS run for one of
them failed.
If 'orderms=false', it also makes it possible that a MS is specified but does not exist.
In such a case flagged data will be used instead. The missing frequency info will be
deduced from the other MSs where all MSs have to have the same number of
channels and must be defined in order of frequency. | | msin.baseline | string | |
Baselines to be selected (default is all baselines). See Description of baseline
selection parameters. Only the CASA baseline selection syntax as described in this
note can be used. | | msin.band | integer | -1 | Band (spectral window) to select (<0 is
no selection). This is mainly useful for WSRT data. | | msin.startchan | integer | 0 |
First channel to use from the input MS (channel numbers start counting at 0). Note
that skipped channels will not be written into the output MS. It can be an expression
with `nchan` (nr of input channels) as parameter. E.g.
nchan/32
will be fine for LOFAR observations with 64 and 256 channels. | | msin.nchan | integer
| 0 | Number of channels to use from the input MS (0 means till the end). It can be an
expression with `nchan` (nr of input channels) as parameter. E.g.
15*nchan/16 | | msin.starttime | string | first time in MS | Center of first time slot to
use; if < first time in MS, dummy time slots are inserted. A date/time must be
specified in the casacore MVTime format, e.g. 19Feb2010/14:01:23.817 | |
msin.endtime | string | last time in MS | Center of last time slot to use; if > last time
in MS, dummy time slots are inserted. | | msin.ntimes | integer | 0 | Number of time
slots to use (0 means till the end). | | msin.useflag | bool | true | Use the current flags
in the MS? If false, all flags in the MS are ignore and the data (except NaN and
infinite values) are assumed to be good and will be used in later steps. | |
msin.datacolumn | string | DATA | Data column to use, i.e. the name of the column in
which the visibilities are written. | | msin.weightcolumn | string | WEIGHT_SPECTRUM
or WEIGHT | Weight column to use. Defaults to WEIGHT_SPECTRUM if this exists,
otherwise the WEIGHT column is used. | | msin.modelcolumn | string | MODEL_DATA |
Model data column. Currently only used in gaincal | | msin.autoweight | bool | false |
Calculate weights using the auto-correlation data? It is meant for setting the proper
weights for a raw LOFAR MeasurementSet. | | msin.forceautoweight | bool | false | In
principle the calculation of the weights should only be done for the raw LOFAR data.
It appeared that sometimes the autoweight switch was accidently set in a DPPP run
on already dppp-ed data. To make it harder to make such mistakes, the
forceautoweight flag has to be set as well for MSs containing dppp-ed data. | ====
Output ==== | msout
msout.name | string | | Name of new output MeasurementSet; if empty, the input MS

https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=public:user_software:documentation:msselection.pdf
https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=public:user_software:documentation:msselection.pdf


2025-07-05 06:01 9/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

is updated. The other msout parameters are not applicable (apart from countflag).
Normally an update is only done if a step is given that can change the data (e.g.
PreFlagger). However, a name '.' or a name equal to the name of the input MS means
that the input MS will always be updated, even if no step is given. This is useful if
only flagging of NaN-s in the MS needs to be done.
Note that when doing averaging, the input MS cannot be updated. | |
msout.overwrite | bool | false | When creating a new MS, overwrite if already
existing? | | msout.datacolumn | string | DATA | The column in which to write the
data. When creating a new MeasurementSet, only column DATA can be used. When
updating the input MeasurementSet, any column can be used. If not existing, it will
be created first. | | msout.weightcolumn | string | WEIGHT_SPECTRUM | The column in
which to write the weights. When creating a new MeasurementSet, only
WEIGHT_SPECTRUM can be used. When updating the input Measurementset, any
column can be used. If not existing, it will be created first. | | msout.writefullresflag |
bool | true | Write the full resolution flags? | | msout.tilesize | integer | 1024 | For
expert user: tile size (in Kbytes) for the data columns in the output MS. | |
msout.tilenchan | integer | 8 | For expert user: maximum number of channels per tile
in output MS. | | msout.clusterdesc | string | “” | If not empty, create the VDS file
using this ClusterDesc file. | | msout.vdsdir | string | “” | Directory where to put the
VDS file; if empty, the MS directory is used. | | msout.storagemanager
msout.storagemanager.name| string | “” | What storage manager to use. When
empty (default), the data will be stored uncompressed. When set to “dysco”, the
data will be compressed. Settings below will set the compression settings; see the
Dysco wiki and the paper for more info. The default settings are reasonably
conservative and safe. | | msout.storagemanager.databitrate | integer | 10 | Number
of bits per float used for columns containing visibilities. Can be set to zero to
compress weights only. | | msout.storagemanager.weightbitrate | integer | 12 |
Number of bits per float used for WEIGHT_SPECTRUM column. | |
msout.storagemanager.distribution | string | “TruncatedGaussian” | Assumed
distribution for compression; “Uniform”, “TruncatedGaussian”, “Gaussian” or
“StudentsT”.| | msout.storagemanager.disttruncation | double | 2.5 | Truncation level
for compression with the Truncated Gaussian distribution.| |
msout.storagemanager.normalization | string | “AF” | Compression normalization
method: AF, RF or Row.| ==== Filter ==== | <step>.type | string | | Case-insensitive
step type; must be 'filter'| | <step>.startchan | integer | 0 | First channel to use from
the input MS (channel numbers start counting at 0). Note that skipped channels will
not be written into the output MS. It can be an expression with `nchan` (nr of input
channels) as parameter. E.g.
nchan/32
will be fine for LOFAR observations with 64 and 256 channels. | | <step>.nchan |
integer | 0 | Number of channels to use from the input MS (0 means till the end). It
can be an expression with `nchan` (nr of input channels) as parameter. E.g.
15*nchan/16 | | <step>.baseline | string | “” | Baselines to keep. See Description of
baseline selection parameters. | | <step>.blrange | double vector | “” | Baselines to
keep. See Description of baseline selection parameters. | | <step>.corrtype | string |
“” | Correlation type to match? Must be auto, cross, or an empty string. | |
<step>.remove | bool | false | If true, the stations not used in any baseline will be
removed from the ANTENNA subtable and the antenna ids in the main table will be
renumbered accordingly. To have a consistent output MeasurementSet, other
subtables (FEED, POINTING, SYSCAL, LOFAR_ANTENNA_FIELD,
LOFAR_ELEMENT_FAILURE, and QUALITY_BASELINE_STATISTIC) will also be updated.

https://github.com/aroffringa/dysco/wiki
https://github.com/aroffringa/dysco/wiki
https://arxiv.org/abs/1609.02019


Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

Note that stations filtered previously (e.g. using msselect) will also be removed,
even if no baseline selection is done in the filter step. | ==== Upsample ==== |
<step>.type | string | | Case-insensitive step type; must be 'upsample'| |
<step>.timestep | integer | | Number of times into which each timestep will be
expanded | ==== AOFlagger ==== | <step>.type | string | | Case-insensitive step
type; must be 'aoflagger' (or 'aoflag'). | | <step>.count.save | bool | false | If true, the
flag percentages per frequency are saved to a table with extension .flagfreq and
percentages per station to a table with extension .flagstat. The basename of the
table is the MS name (without extension) followed by the stepname and extension. |
| <step>.count.path | string | “” | The directory where to create the flag percentages
table. If empty, the path of the input MS is used. | | <step>.strategy | string | “” |
The name of the strategy file to use. If no name is given, the default strategy is used
which is fine for HBA. For LBA data the strategy LBAdefault should be used.
A strategy file is looked up as given. If not found, it is looked up in
$LOFARROOT/share/rfistrategies that contains the standard strategies. | |
<step>.memoryperc | integer | 0 | If >0, percentage of the machine's memory to use.
If memorymax nor memoryperc is given, all memory will be used (minus 2 GB (at most
50%) for other purposes). Accepts only integer values (LOFAR v2.16). Limiting the
available memory too much affects flagging accuracy; in general try to use at least
10 GB of memory. | | <step>.memorymax | double | 0 | Maximum amount of memory
(in GB) to use. ⇐0 means no maximum. As stated above, this affects flagging
accuracy.| | <step>.timewindow | integer | 0 | Number of time slots to be flagged
jointly. The larger the time window, the better the flagging performs. 0 means that it
will be deduced from the memory to use. Note that the time window can be extended
with an overlap on the left and right side to minimize possible boundary effects.| |
<step>.overlapperc | double | 0 or 1 | If >0, percentage of time window to be added
to the left and right side for overlap purposes (to minimize boundary effects). If
overlapmax is not given, it defaults to 1%. | | <step>.overlapmax | integer | 0 |
Maximum overlap value (0 is no maximum). | | <step>.autocorr | bool | true | Flag
autocorrelations? | | <step>.pulsar | bool | false | Use flagging strategy optimized for
pulsar observations? | | <step>.pedantic | bool | false | Be more pedantic when
flagging? | | <step>.keepstatistics | bool | true | Write the quality statistics? | ====
MADFlagger ==== | <step>.type | string | | Case-insensitive step type; must be
'madflagger' (or 'madflag'). | | <step>.count.save | bool | false | If true, the flag
percentages per frequency are saved to a table with extension .flagfreq and
percentages per station to a table with extension .flagstat. The basename of the
table is the MS name (without extension) followed by the stepname and extension. |
| <step>.count.path | string | “” | The directory where to create the flag percentages
table. If empty, the path of the input MS is used. | | <step>.threshold | float | 1 | The
flagging threshold that can be baseline dependent.
It can be any (TaQL-like) expression that evaluates to a float. In the expression the
variable 'bl' can be used which is the baseline length (in meters). In this way the
value can be made baseline dependent. For example:
iif(bl<100, 0.5, iif(bl<500, 0.75, iif(bl<1000, 0.9, 1)))
defines the threshold between the baseline lengths 100, 500, and 1000 meter. | |
<step>.timewindow | integer | 1 | Number of times in the median box. If not odd, 1 is
subtracted. It is silently reduced if exceeding the actual number of time slots.
In a way similar to 'threshold' it can be made baseline length dependent. | |
<step>.freqwindow | integer | 1 | Number of channels in the median box. If not odd,
1 is subtracted. It is silently reduced if exceeding the actual number of channels.

http://www.astron.nl/casacore/trunk/casacore/doc/notes/199.html


2025-07-05 06:01 11/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

In a way similar to 'threshold' it can be made baseline length dependent. | |
<step>.correlations | integer vector | [] | The correlations to use in the flagger; an
empty vector means all. They are handled in the order given; if the flagging criterium
holds for one correlation, the other correlations are not tested anymore. So if one
knows that most RFI is found in YY, then in XX and finally some in XY and YX, the
vector should be [3,0,1,2] because it makes the program run faster. Note that the
statistics printed at the end show how many flagged data points have been found
per correlation. | | <step>.applyautocorr | bool | False | True means that the
MADFlagger is used on the auto-correlations only. The resulting flags are applied to
the cross-correlations, thus data are flagged where the corresponding auto-
correlations are flagged.
An error is given if set to True, while the MS does not contain auto-correlations. | |
<step>.blmin | integer | -1 | Minimum baseline length (in meters).
Only baselines with a length >= this minimum are flagged. If applyautocorr=true,
the autocorrelations are applied to the matching baselines only. | | <step>.blmax |
integer | 1e30 | Maximum baseline length (in meters). It is similar to minimum. |
==== PhaseShift ==== | <step>.type | string | | Case-insensitive step type; must be
'phaseshifter' (or 'phaseshift'). | | <step>.phasecenter | string vector | | The RA and
DEC (in J2000) of the new phase center. If an empty vector (i.e. []) is given, the
original phase center is used. The RA and DEC can be given in sexagesimal format or
as a value followed by a unit (default rad). For example, [12h31m34.5,
52d14m07.34] or [187.5deg, 52.45deg] | ==== Demixer ==== | <step>.type |
string | | Case-insensitive step type; must be 'demixer' (or 'demix'). | |
<step>.baseline | string | “” | Baselines to demix. See Description of baseline
selection parameters. | | <step>.blrange | double vector | “” | Baselines to demix.
See Description of baseline selection parameters. | | <step>.corrtype | string | cross |
Baselines to demix. Correlation type to match? Must be auto, cross, or an empty
string. | | <step>.timestep | integer | 1 | Number of time slots to average when
subtracting. It is truncated if exceeding the actual number of times. Note that the
data itself will also be averaged by this amount. | | <step>.freqstep | integer | 1 |
Number of channels to average when subtracting. It is truncated if exceeding the
actual number of channels. Note that the data itself will also be averaged by this
amount. | | <step>.demixtimestep | integer | timestep | Number of time slots to
average when demixing. It is truncated if exceeding the actual number of times. It
defaults to the averaging used for the subtract. | | <step>.demixfreqstep | integer |
freqstep | Number of channels to average when demixing. It is truncated if exceeding
the actual number of channels. It defaults to the averaging used for the subtract. | |
<step>.ntimechunk | integer | #cores | Number of demix time slots (after averaging)
that are processed jointly in as much a parallel way as possible. If subtract uses
different time averaging, it has to fit integrally. | | <step>.skymodel | string | sky |
The name of the SourceDB to use (i.e., the output of makesourcedb). | |
<step>.instrumentmodel | string | instrument | The name of the ParmDB to use. The
ParmDB does not need to exist. If it does not exist it will be created. | |
<step>.subtractsources | string vector | | Names of the sources to subtract. If none
are given, demixing comes down to averaging. The sources must exist as patches in
the SourceDB. | | <step>.modelsources | string vector | [] | Names of sources with
models to take into account when solving. the sources must exist as patches in the
SourceDB. Note that the target should NOT be part of this parameter. If a model of
the target has to be used, it has to be given in parameter targetsource. | |
<step>.targetsource | string | “” | It can be used to specify the name of the source
model of the target. If given, the target source model (its patch in the SourceDB) is



Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

taken into account when solving; in this case parameter othersources cannot be
given. It cannot be given if ignoretarget=true. If not given, the target is projected
away or ignored (depending on parameter ignoretarget). | | <step>.ignoretarget |
bool | false | false = project the target source away; true = ignore the target | |
<step>.othersources | string vector | [] | Names of sources of which the direction is
taken into account when demixing by projecting the directions away. The direction
needs to be specified if the source is unknown (which is usually the case). It can be
done using parameters <step>.<sourcename>.phasecenter. | |
<step>.<sourcename>.phasecenter | string vector | Taken from SourceDB | The
J2000 direction [ra,dec] of a source given above. | | <step>.propagatesolutions | bool
| true | If set to true, solutions of a time slot are used as initial values for the next
time slot. If set to false, the diagonal elements of the Jones matrix are initialized to
one and the off-diagonal elements to zero. | | <step>.defaultgain | double | 1.0 | The
default and initial gain for the directional gains that are computed internally. | |
<step>.maxiter | int | 50 | Maximum number of iterations used in the LM solve |
==== SmartDemixer ==== | <step>.type | string | | Case-insensitive step type; must
be 'smartdemixer' (or 'smartdemix'). | | <step>.baseline | string | “” | Baselines to
demix. See Description of baseline selection parameters. | | <step>.blrange | double
vector | “” | Baselines to demix. See Description of baseline selection parameters. | |
<step>.corrtype | string | cross | Baselines to demix. Correlation type to match? Must
be auto, cross, or an empty string. | | <step>.target.baseline | string | “CS*&” |
Baselines to use in prediction of median target amplitude. See Description of
baseline selection parameters. | | <step>.target.blrange | double vector | “” |
Baselines to use in prediction of median target amplitude. See Description of
baseline selection parameters. | | <step>.target.corrtype | string | cross | Baselines
to use in prediction of median target amplitude. Correlation type to match? Must be
auto, cross, or an empty string. | | <step>.timestep | integer | 1 | Number of time
slots to average when subtracting. It is truncated if exceeding the actual number of
times. Note that the data itself will also be averaged by this amount. | |
<step>.freqstep | integer | 1 | Number of channels to average when subtracting. It is
truncated if exceeding the actual number of channels. Note that the data itself will
also be averaged by this amount. | | <step>.demixtimestep | integer | timestep |
Number of time slots to average when demixing. It is truncated if exceeding the
actual number of times. It defaults to the averaging used for the subtract. | |
<step>.demixfreqstep | integer | freqstep | Number of channels to average when
demixing. It is truncated if exceeding the actual number of channels. It defaults to
the averaging used for the subtract. | | <step>.chunksize | integer | demixtimestep |
Number of time slots in a chunk for which it is decided how to demix (which
sources/stations to use and how to deal with the target). It has to be a multiple of
parameter 'demixtimestep'. | | <step>.ntimechunk | integer | #cores | Number of
time chunks that are processed jointly in as much a parallel way as possible.
Preferably it is a multiple of the number of cores. Note that for a typical LOFAR
observation the data of a single time slot is about 4 MB. A typical chunk size can be 2
minutes, thus 120 time slots per core. For 24 cores this amounts to about 11 GB!! | |
<step>.ateam.skymodel | string | | The detailed sky model of the A-team sources
used to solve for the complex gains. It is the name of the SourceDB to use (i.e., the
output of makesourcedb). | | <step>.estimate.skymodel | string | “” | The coarse sky
model of the A-team sources used to estimate the visibilities when deciding how to
demix a chunk. It is the name of the SourceDB to use (i.e., the output of
makesourcedb outtype=blob).



2025-07-05 06:01 13/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

If no name is given, the detailed A-team model will be used.
The SourceDB must contain the same sources as the detailed model at about the
same position. The order can be different though. | | <step>.target.skymodel | string
| | The sky model of the target. It is the name of the SourceDB to use (i.e., the output
of makesourcedb). | | <step>.target.delta | double | 60 | Angular distance uncertainty
(in arcsec) to determine if an A-team source is at the same position as a target
source. | | <step>.instrumentmodel | string | instrument | The name of the ParmDB
to use. The ParmDB does not need to exist. If it does not exist it will be created.
Note that the ParmDB is created after the output MS is created, so it can be a
subdirectory of the output MS.| | <step>.sources | string vector | “” | Names of the
A-team sources to use. If none are given, all sources in the A-team sky model will be
used. | | <step>.ateam.threshold | double | 50 for LBA
5 for HBA | Take a source/baseline into account if its maximum estimated amplitude
> threshold. | | <step>.minnbaseline | integer | 6 | Solve a source/station if the
station occurs in at least 'minnbaseline' baselines with amplitude > ateam.threshold.
| | <step>.minnstation | integer | 5 | Solve a source if at least 'minnstation' stations
are solvable for the source. | | <step>.target.threshold | double | 200 for LBA
100 for HBA | Include the target in the solve if its maximum estimated amplitude >
threshold. | | <step>.ratio1 | double | 5 | Include the target in the solve if the
estimated amplitude ratio Target/max(Ateam) > ratio1. | | <step>.distance.threshold
| double | 60 | Distance threshold (in degrees). The target is close to the A-team if
the angular distance (scaled with freq) < threshold for any A-team source (thus
angdist*obsfreq/reffreq < threshold). | | <step>.distance.reffreq | double | 60e6 | The
'reffreq' frequency used above. | | <step>.ratio2 | double | 0.25 | Include the target in
the solve if the target is close to the A-team and the estimated amplitude ratio
Target/min(Ateam) > ratio2. | | <step>.maxiter | integer | 50 | Maximum number of
iterations to use in the solve. | | <step>.propagatesolutions | bool | true | If set to
true, solutions of a time slot are used as initial values for the next time slot. If set to
false, the diagonal elements of the Jones matrix are initialized to one and the off-
diagonal elements to zero. However, solutions will not be transferred between
chunks processed in parallel. | | <step>.defaultgain | double | 1e-3 | The default gain
to use for the real part of the diagonal Jones elements for the unsolvable
sources/stations. Take into account that the scale of the raw visibilities changed
when COBALT was adopted. In the case of data correlated with BG/P, this parameter
should be tuned down (1e-8). | | <step>.verbose | int | 0 | 0 = only show basic demix
statistics
1 = show for each time chunk how target is handled, which sources are solvable, and
how many stations.
>10 = various levels of debugging output. | | <step>.solveboth | bool | false | Mainly
for test purposes. True means that in the solve only the baselines are used for which
both stations are solvable. Usually this gives worse results. | | <step>.targethandling
| integer | 0 | Mainly for test purposes. It enforces the target handling. 1=include,
2=deproject, 3=ignore, else=use smart way. | | <step>.applybeam | bool | true |
Mainly for test purposes. Apply the station beam in the estimate, solve, and subtract
steps? | | <step>.subtract | bool | true | Mainly for test purposes. False means that
the subtract step is not done, thus only a solve of the gains is done. | ==== Averager
==== | <step>.type | string | | Case-insensitive step type; must be 'averager' (or
equivalent 'average' or 'squash'). | | <step>.timestep | integer | 1 | Number of time
slots to average. It is truncated if exceeding the actual number of times. | |
<step>.freqstep | integer | 1 | Number of channels to average. It is truncated if
exceeding the actual number of channels. | | <step>.minpoints | integer | 0 | If



Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

number of averaged unflagged input points < minpoints, the averaged point is
flagged. | | <step>.minperc | float | 0 | Like minpoints, but expressed as a percentage
of timestep*freqstep. | | <step>.timeresolution | float | 0 | Target time resolution, in
seconds. If this is given, and bigger than zero, it overrides <step>.timestep | |
<step>.freqresolution | float | 0 | Target frequency resolution, in Hz (or append
“MHz” or “kHz” to specify it in those units). If this is given, and bigger than zero, it
overrides <step>.freqstep | ==== StationAdder ==== | <step>.type | string | | Case-
insensitive step type; must be 'stationadder' (or equivalent 'stationadd'). | |
<step>.stations | record | | One or more names of new stations each followed by the
list of stations it consists of. A station name in the list can be a glob-like pattern.
Optionally such a pattern can be negated by a ! or ^ meaning that names matching
that pattern are excluded from the selection so far. For example:
stations={ST6:'CS00[2-7]*'} can be used to form the superstation from all
superterp stations.
{ST6:['CS00[2-7]*','!CS005*']} is similar, but excludes CS005.
{ST001:[CS001,CS002,CS003], ST002:[CS004,CS005,CS006]}
defines 2 new stations ST001 and ST002 consisting of the stations in the lists
following their names. | | <step>.minpoints | int| 1 | Flag a new data point if number
of unflagged data points added is less than minpoints. | | <step>.useweights | bool |
true | Use the input data weights? False means all input visibilities have weight 1. | |
<step>.average | bool | true | Is a visibility of a new station the weighted average of
its input visibilities and its UVW the weighted average of the input UVWs? | |
<step>.autocorr | bool | false | Form new auto-correlations? | | <step>.sumauto |
bool | true | Sum auto- or cross-correlations to form new auto-correlations? | ====
ScaleData ==== | <step>.type | string | | Case-insensitive step type; must be
'scaledata'. | | <step>.stations | string vector | [] | Zero or more glob-like patterns
defining the stations for which the corresponding coefficient vector has to be used.
The coefficients of the first matching pattern are used. Default coefficients
(determined by Adam Deller for LBA and HBA) are used for stations not given. For
example:
stations=[CS*, RS*, *] | | <step>.coeffs | double vector | [] | Zero or more vectors
of coefficients defining a polynomial in frequency (MHz). For example:
coeffs=[ [1.5, 0.7, 0.04], [1.7, 0.65], [1.2, 0.8] ]
The first vector results in a scale factor of 1.5 + 0.7*f + 0.04*f*f where f is the
channel frequency in MHz.
Note that an extra scaling can be applied taking into account the number of used
dipoles/tiles of a station (see next parameter). | | <step>.scalesize | bool | | This
parameter determines if an extra scaling has to be applied to correct for the number
of tiles/dipoles actually used in a station. By default this will be done for the stations
using the default coefficients, because those coefficients have been determined for
an LBA station with 48 dipoles and HBA station with 24 tiles. By default it will not be
done for explicitly given coefficients, because it is supposed they are determined
specifically for that station.
Note that giving stations=* coeffs=1 scalesize=true will correct for station size
only. | ==== PreFlagger ==== | <step>.type | string | | Case-insensitive step type;
must be 'preflagger' (or 'preflag'). | | <step>.count.save | bool | false | If true, the
flag percentages per frequency are saved to a table with extension .flagfreq and
percentages per station to a table with extension .flagstat. The basename of the
table is the MS name (without extension) followed by the stepname and extension. |
| <step>.count.path | string | “” | The directory where to create the flag percentages



2025-07-05 06:01 15/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

table. If empty, the path of the input MS is used. | | <step>.mode | string | set | Case-
insensitive string telling what to do with the flags of the data matching (or not
matching) the selection criteria given in the other parameters.
'set' means set the flags for the matching data. This is the default mode.
'clear' means clear the flags for the matching data. However, flags of invalid data
(NaN or zero) are always set.
'setcomplement' or 'setother' means set flags for NON-matching data.
'clearcomplement' or 'clearother' means clear flags for NON-matching (valid) data. | |
.expr | string | [] | Expression of preflagger keyword sets (see above). Operators
AND, OR, and NOT are possible (or their equivalents &&,&, ||, |, and !). Parentheses
can be used to change precedence order. For example: c1 and (c2 or c3)
Take care that the name of the set is used as an extra prefix in the PreFlagger
parameter names. | | .timeofday | time vector | [] | Ranges of UTC time-of-day given
as st..end or val+-delta. Each value must be given as 12:34:56.789, 12h34m56.789,
or as a value followed by a unit like h, min, or s. | | .abstime | date/time vector | [] |
Ranges of absolute UTC date/time given as st..end or val+-delta. Each value (except
delta) must be given as a date/time in casacore MVTime format, for instance 12-
Mar-2010/11:31:00.000. A delta value must be given as a time (for instance 1:30:0 or
20s). | | .reltime | time vector | [] | Ranges of times (using .. or +-) since the start of
the observation. A time can be given like 1:30:0 or 20s. | | .timeslot | integer vector |
[] | Time slot sequence numbers. First time slot is 0. st..end means end inclusive. | |
.lst | time vector | [] | Ranges of Local Apparent Sidereal Times like 1:30:0 +-
20min. The LST of a time slot is calculated for the array position, thus not per
antenna. | | .azimuth | direction vector | [] | Ranges of azimuth angles given as
st..end or val+-delta. Each value has to be given as a casacore direction like
12:34:56.789 or 12h34m56.789, 12.34.56.789 or 12d34m56.789, or a value followed
by a unit like rad or deg. | | .elevation | direction vector | [] | Ranges of elevation
angles (similar to azimuth). For example: 0deg..10deg | | .baseline | baseline vector |
“” | See Description of baseline selection parameters. | | .corrtype | string | “” |
Correlation type to match? Must be auto, cross, or an empty string. | | .blmin | double
| -1 | If blmin > 0, baselines with length < blmin meter will match. | | .blmax | double |
-1 | If blmax > 0, baselines with length > blmax meter will match. | | .uvmmin |
double | -1 | If uvmmin > 0, baselines with UV-distance < uvmmin meter will match.
Note that the UV-distance is the projected baseline length. | | .uvmmax | double | -1 |
If uvmmax > 0, baselines with UV-distance > uvmmax meter will match. | | .freqrange
| string vector | [] | Channels in the given frequency ranges will match. Each value in
the vector is a range which can be given as start..end or start+-delta. A value can be
followed by a unit like KHz. If only one value in a range has a unit, the unit is also
applied to the other value. If a range has no unit, it defaults to MHz. For example:
freqrange=[1.2 .. 1.4 MHz, 1.8MHz+-50KHz] flags channels between 1.2MHz and
1.4MHz and between 1.75MHz and 1.85MHz. The example shows that blanks can be
used at will. | | .chan | string vector | [] | The given channels will match (start
counting at 0). Channels exceeding the number of channels are ignored. Similar to
msin, it is possible to specify the channels as an expression of nchan. Furthermore, ..
can be used to specify ranges. For example: chan=[0..nchan/32-1,
31*nchan/32..nchan-1] to flag the first and last 2 or 8 channels (depending on 64
or 256 channels in the observation). | | .amplmin | float vector | -1e30 | Correlation
data with amplitude < amplmin will match. It can be given per correlation. For
example, amplmin=[100,,,100] matches data points with XX or YY amplitude < 100.
The non-specified amplitudes get the default value.
It is also possible to give a single value (without brackets) meaning that it is used as



Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

the minimum for all correlations. | | .amplmax | float vector | 1e30 | Correlation data
with amplitude > amplmax will match. | | .phasemin | float vector | -1e30 |
Correlation data with phase < phasemin (in radians) will match. | | .phasemax | float
vector | 1e30 | Correlation data with phase > phasemax (in radians) will match. | |
.realmin | float vector | -1e30 | Correlation data with real complex part < realmin will
match. | | .realmax | float vector | 1e30 | Correlation data with real complex part >
realmax will match. | | .imagmin | float vector | -1e30 | Correlation data with
imaginary complex part < imagmin will match. | | .imagmax | float vector | 1e30 |
Correlation data with imaginary complex part > imagmax will match. | ====
ApplyCal ==== | <step>.type | string | | Case-insensitive step type; must be
'applycal' (or 'correct'). | | <step>.parmdb | string | | Path of parmdb in which the
parameters are stored. This can also be an H5Parm file, in that case the filename has
to end in '.h5' | | <step>.correction | string | gain | Type of correction to perform, can
be one of 'gain', 'tec', 'clock', '(common)rotationangle' / 'rotation',
'(common)scalarphase', '(common)scalaramplitude' or 'rotationmeasure' (create
multiple ApplyCal steps for multiple corrections). When using H5Parm, specify the
name of the soltab here; the type will be deduced from the metadata in that soltab. |
| <step>.direction | string | “” | If using H5Parm, the direction of the solution to use |
| <step>.updateweights | bool | false | Update the weights column, in a way
consistent with the weights being inverse proportional to the autocorrelations (e.g.
if 'autoweights' was used before). | | <step>.invert | bool | true | Invert the
corrections, to correct the data. Default is true. If you want to corrupt the data, set it
to 'false' | | <step>.timeslotsperparmupdate | int | 100 | Number of time slots to
handle after one read of the parameter file. Optimization to prevent spurious reading
from the parmdb. | | <step>.steps | list | [] | (new in version 3.1) ApplyCal substeps,
e.g. [myApplyCal1, myApplyCal2]. Their parameters can be specified through e.g.
<step>.myApplyCal1.correction=tec. If a parameter is not given for the substep, it
takes the value from <step>.. | ==== GainCal ==== | <step>.type | string | | Case-
insensitive step type; must be 'gaincal' or 'calibrate'. | | <step>.caltype | string | |
The type of calibration that needs to be performed, can be one of 'fulljones',
'diagonal', 'phaseonly', 'scalarphase'. Experimental values are 'amplitude' or
'scalaramplitude', 'tec', 'tecandphase' | | <step>.parmdb | string | | Path of parmdb in
which the computed parameters are to be stored. If the parmdb already exists, it will
be overwritten. Note: You cannot use this parmdb in an applycal step in the same run
of DPPP. To apply the solutions of the gaincal directly, use 'gaincal.applysolution'
(see below). New in LOFAR 3.1: if the parmdb name ends in .h5 , an H5Parm will be
written.| | <step>.blrange | vector | | Vector of baseline lengths to use for
calibration. See Description of baseline selection parameters. New in version 2.20 | |
<step>.uvlambdamin | double | 0 | Ignore baselines / channels with UV <
uvlambdamin wavelengths. Note: also all other variants of uv flagging described in
UVWFlagger (uvmmin, uvmrange, uvlambdarange, etc) are supported (New in 3.1)| |
<step>.baseline | string | | Baseline selection filter for calibration. See Description of
baseline selection parameters. New in version 2.20 | | <step>.applysolution | bool |
false | Apply the calibration solution to the visibilities. Note that you should always
also inspect the parmdb afterwards to check that the solutions look reasonable. | |
<step>.solint | int | 1 | Number of time slots on which a solution is assumed to be
constant (same as CellSize.Time in BBS). 0 means all time slots. Note that for larger
settings of solint, and specially for solint = 0, the memory usage of gaincal will be
large (all visibilities for a solint should fit in memory).| | <step>.nchan | int | 0 |
Number of channels on which a solution is assumed to be constant (same as



2025-07-05 06:01 17/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

CellSize.Freq in BBS). 0 means all channels. When caltype = 'tec' or 'tecandphase',
the default is 1, meaning that a TEC will be fitted through a phase for each channel. |
| <step>.usemodelcolumn | bool | false | Use model column. The model column name
can be specified with msin.modelcolumn (default MODEL_DATA) | |
<step>.applybeamtomodelcolumn | bool | false | Apply the beam model (at the phase
center) to the visibilities in the model column. If this option is true, all options from
applybeam are valid as well (except .invert, since the model data will always be
corrupted for the beam)| | <step>.propagatesolutions | bool | true | Use solutions of
one time interval as a starting value for the next time interval | | <step>.maxiter | int
| 50 | Maximum number of iterations of stefcal | | <step>.detectstalling | bool | true |
Detect if the iteration does not converge anymore and then stop iterating even if
maxiter is not reached | | <step>.tolerance | float | 1.e-5 | Tolerance to which the
model should match the data | | <step>.minblperant | int | 4 | If an antenna has less
than minblperant unflagged data points for a given solution slot, it is not used for
calibration | | <step>.timeslotsperparmupdate | int | 500 | Number of solution
intervals after which the parmdb is updated | | <step>.debuglevel | int | 0 |
Debugging. If debuglevel==1, then a file debug.h5 is created containing all iterands.
This file will be very large; you can use it to check the convergence speed etc. | |
<step>.sourcedb | | | Same as in Predict step | | <step>.sources | | | Same as in Predict
step | | <step>.usebeammodel | | | Same as in Predict step | | <step>.operation | | |
Same as in Predict step | | <step>.applycal.* | | | ApplyCal sub-step, same as in Predict
step | | <step>.onebeamperpatch | | | Same as in ApplyBeam step | |
<step>.usechannelfreq | | | Same as in ApplyBeam step | | <step>.beammode | | |
Same as in ApplyBeam step | ==== DDECal ==== | <step>.type | string | | Case-
insensitive step type; must be 'ddecal'. | | <step>.sourcedb | string | | Sourcedb
(created with `makesourcedb`) with the sky model to calibrate on. | |
<step>.directions | list | [] | List of directions to calibrate on. Every element of this
list should b a list of facets. Default: every facet is a direction. | | <step>.maxiter |
int | 50 | Maximum number of iterations. | | <step>.detectstalling | bool | true | Stop
iterating when no improvement is measured anymore (after a minimum of 30
iterations). | | <step>.stepsize | double | 0.2 | stepsize between iterations. | |
<step>.h5parm | string | | Filename of output H5Parm (to be read by e.g. losoto). If
empty, defaults to instrument.h5 within the measurement set. | | <step>.solint | int
| 1 | Solution interval in timesteps. | | <step>.usebeammodel | bool | false | use the
beam model. All beam-related options of the Predict step are also valid. | |
<step>.mode | string | complexgain | Type of constraint to apply. Options are
scalarcomplexgain, scalarphase, scalaramplitude, tec, tecandphase. Modes in
development are fulljones, complexgain, phaseonly, amplitudeonly, rotation,
rotation+diagonal. | | <step>.tolerance | double | 1e-5 | Controls the accuracy to be
reached: when the normalized solutions move less than this value, the solutions are
considered to be converged and the algorithm finishes. Lower values will cause more
iterations to be performed.| | <step>.propagatesolutions | bool | false | Initialize
solver with the solutions of the previous time slot. | | <step>.approximatetec | bool |
false | Uses an approximation stage in which the phases are constrained with the
piece-wise fitter, to solve local minima problems. Only effective when mode=tec or
mode=tecandphase. | | <step>.maxapproxiter | int | maxiter/2 | Maximum number of
iterations during approximating stage. | | <step>.approxchunksize | int | 0 | Size of
fitted chunksize during approximation stage in nr of channels. With
approxchunksize=1 the constraint is disabled during the approx stage (so channels
are solved for independently). Once converged, the solutions are constrained and
more iterations are performed until that has converged too. The default is



Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

approxchunksize=0, which calculates the chunksize from the bandwidth (resulting in
10 chunks per octave of bandwidth). | | <step>.approxtolerance | double |
tolerance*10 | Tolerance at which the approximating first stage is considered to be
converged and the second full-constraining stage is started. The second stage
convergences when the tolerance set by the 'tolerance' keyword is reached. Setting
approxtolerance to lower values will cause more approximating iterations. Since
tolerance is by default 1e-5, approxtolerance is by default 1e-4. | | <step>.nchan | int
| 1 | Number of channels in each channel block, for which the solution is assumed to
be constant. The default is 1, meaning one solution per channel (or in the case of
constraints, fitting the constraint over all channels individually). 0 means one
solution for the whole channel range. If the total number of channels is not divisable
by nchan, some channelblocks will become slightly larger. | | <step>.coreconstraint |
double | 0 | Distance in meters. When unequal to 0, all stations within the given
distance from the reference station (0) will be constraint to have the same solution. |
| <step>.statfilename | string | “” | File to write the step-sizes to. Form of the file is:
“<iterationnr> <normalized-stepsize> <unnormalized-stepsize>”, and all solution
intervals are concatenated. File is not written when this parameter is empty. | |
<step>.uvlambdamin | double | 0 | Ignore baselines / channels with UV <
uvlambdamin wavelengths. Note: also all other variants of uv flagging described in
UVWFlagger (uvmmin, uvmrange, uvlambdarange, etc) are supported (New in 3.1)|
==== Predict ==== | <step>.type | string | | Case-insensitive step type; must be
'predict' | | <step>.sourcedb | string | | Path of sourcedb in which a sky model is
stored (the output of makesourcedb)| | <step>.sources | string vector | [] | Patches
to use in the predict step of the calibration | | <step>.usebeammodel | bool | false |
Use the LOFAR beam in the predict part of the calibration | | <step>.operation |
string | replace | Should the predicted visibilities replace those being processed
(replace, default), should they be subtracted from those being processed
(subtract) or added to them (add) | | <step>.applycal.* | | | Set of options for
applycal to apply to this predict. For this applycal-substep, .invert is off by default,
so the predicted visibilities will be corrupted with the parmdb | |
<step>.onebeamperpatch | | | Same as in ApplyBeam step | | <step>.usechannelfreq |
| | Same as in ApplyBeam step | | <step>.beammode | | | Same as in ApplyBeam step |
==== H5ParmPredict ==== | <step>.type | string | | Case-insensitive step type;
must be 'h5parmpredict' | | <step>.sourcedb | string | | Path of sourcedb in which a
sky model is stored (the output of makesourcedb)| | <step>.parmdb | string | | Path
of the h5parm in which the corruptions are stored | | <step>.applycal.correction |
string | | SolTab which contains the directions to be predicted. The names of the
directions need to look like [dir1,dir2], where dir1 and dir2 are patches in the
sourcedb. | | <step>.directions | string vector | [] | List of directions to include. Each
of those directions needs to be in the h5parm soltab. If empty, all directions in the
soltab are predicted. || | <step>.usebeammodel | bool | false | Use the LOFAR beam
in the predict part of the calibration | | <step>.operation | string | replace | Should
the predicted visibilities replace those being processed (replace, default), should
they be subtracted from those being processed (subtract) or added to them (add) | |
<step>.applycal.* | | | Set of options for applycal to apply to this predict. For this
applycal-substep, .invert is off by default, so the predicted visibilities will be
corrupted with the parmdb | | <step>.onebeamperpatch | | | Same as in ApplyBeam
step | | <step>.usechannelfreq | | | Same as in ApplyBeam step | | <step>.beammode |
| | Same as in ApplyBeam step | ==== ApplyBeam ==== | <step>.type | string | |
Case-insensitive step type; must be 'applybeam' | | <step>.onebeamperpatch | bool |



2025-07-05 06:01 19/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

true | Compute the beam only for the center of each patch (saves computation time,
but you should set this to false for large patches. This option is only useful if the
beam is applied as part of a predict step. | | <step>.usechannelfreq | bool | true |
Compute the beam for each channel of the measurement set separately. This is
useful for merged / concatenated measurement sets. For raw LOFAR data you should
set it to false, so that the beam will be formed as in the station hardware. Also,
setting it to false is faster. | | <step>.updateweights | bool | false | Update the
weights column, in a way consistent with the weights being inverse proportional to
the autocorrelations (e.g. if 'autoweights' was used before). | | <step>.invert | bool |
true** | Invert the beam. When applying the beam to transfer calibration solutions, this should
be true. In other words: invert=true means correcting for the beam, invert=false means
corrupting with the beam. When using the beam in a predict (or gaincal) step, this option
defaults to false (so it will corrupt for the beam). |

| <step>.beammode | string | “default” | Beam mode to apply, can be “array_factor”, “element” or
“default”. Default is to apply both the element beam and the array factor. |

UVWFlagger

<step>.type string Case-insensitive step type; must be 'uvwflagger' or
'uvwflag'.

<step>.count.save bool false

If true, the flag percentages per frequency are saved to a
table with extension .flagfreq and percentages per
station to a table with extension .flagstat. The
basename of the table is the MS name (without extension)
followed by the stepname and extension.

<step>.count.path string “” The directory where to create the flag percentages table. If
empty, the path of the input MS is used.

<step>.uvmrange string
vector []

Flag baselines with UV within one the given ranges (in
meters). Delimiters .. and +- can be used to specify a
range. E.g., uvmrange = [20..30, 40+-5] flags
baselines with UV in range 20-30 meter and 35-45 meter.

<step>.uvmmin double 0 Flag baselines with UV < uvmmin meter.
<step>.uvmmax double 1e15 Flag baselines with UV > uvmmax meter.

<step>.umrange string
vector [] Flag baselines with U within one of the given ranges (in

meters).
<step>.ummin double 0 Flag baselines with U < ummin meter.
<step>.ummax double 1e15 Flag baselines with U > ummax meter.

<step>.vmrange string
vector [] Flag baselines with V within one of the given ranges (in

meters).
<step>.vmmin double 0 Flag baselines with V < vmmin meter.
<step>.vmmax double 1e15 Flag baselines with V > vmmax meter.

<step>.wmrange string
vector [] Flag baselines with W within one of the given ranges (in

meters).
<step>.wmmin double 0 Flag baselines with W < wmmin meter.
<step>.wmmax double 1e15 Flag baselines with W > wmmax meter.



Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

<step>.uvlambdarange string
vector []

Flag baselines/channels with UV within one the given
ranges (in wavelengths). Delimiters .. and +- can be used to
specify a range. E.g., uvlambdarange = [20..30,
40+-5] flags baselines/channels with UV in range 20-30
wavelengths and 35-45 wavelengths.

<step>.uvlambdamin double 0 Flag baselines/channels with UV < uvlambdamin
wavelengths

<step>.uvlambdamax double 1e15 Flag baselines/channels with UV > uvlambdamax
wavelengths

<step>.ulambdarange string
vector [] Flag baselines/channels with U within one the given ranges

(in wavelengths).
<step>.ulambdamin double 0 Flag baselines/channels with U < ulambdamin wavelengths
<step>.ulambdamax double 1e15 Flag baselines/channels with U > ulambdamax wavelengths

<step>.vlambdarange string
vector [] Flag baselines/channels with V within one the given ranges

(in wavelengths).
<step>.vlambdamin double 0 Flag baselines/channels with V < vlambdamin wavelengths
<step>.vlambdamax double 1e15 Flag baselines/channels with V > vlambdamax wavelengths

<step>.wlambdarange string
vector [] Flag baselines/channels with W within one the given ranges

(in wavelengths).
<step>.wlambdamin double 0 Flag baselines/channels with W < wlambdamin wavelengths

<step>.wlambdamax double 1e15 Flag baselines/channels with W > wlambdamax
wavelengths

<step>.phasecenter string
vector []

If given, use this phase center to calculate the UVW
coordinates to flag on. The vector can consist of 1, 2 or, 3
values. If one value is given, it must be the name of a
moving source (e.g. SUN or JUPITER). Otherwise the first
two values must contain a source position that can be given
in sexagesimal format or as a value followed by a unit. The
third value can contain the direction type; it defaults to
J2000. Possible types are GALACTIC, ECLIPTIC, SUPERGAL,
J2000, B1950 (as defined in the casacore Measures
system).

Description of baseline selection parameters

Parameters to select on baseline can be used in the steps preflagger and filter. The step msin only
supports .baseline. The parameters are described in the table below.

Parameter type default description

.corrtype string “” Correlation type to match? Must be auto, cross, or an empty string (=
all).

.blrange double
vector []

Zero or more ranges of physical baseline lengths (in m). A baseline
matches if its length is within one of the ranges. E.g.,
blrange=[0,10000, 100000, 1e30]



2025-07-05 06:01 21/22 DPPP

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Parameter type default description

.baseline baseline
vector “”

Names of baselines to be matched. It can be given as either a vector
of vectors or as a casacore MSSelection string. These two methods
are mutually exclusive. When in doubt, use the second syntax.

1. If given as a vector, a vector element can be a vector of two names
giving the stations forming a baseline. For example: baseline=[
[CS001,RS003], [CS002,RS005] ] selects baselines CS001-
RS003 and CS002-RS005.
Each name can be a shell-type pattern (with wildcards * ? [] or {}).
Thus baseline=[ [CS*,RS*] ] selects all baselines between core
and remote stations. Note that the wildcard characters {} mean OR.
They can be used to pair groups of stations (quotes are needed). For
example: baseline=[ [“{CS001,CS002}”,“{RS003,RS005}”]
] selects baselines CS001-RS003, CS001-RS005, CS002-RS003, and
CS002-RS005.
Besides giving a baseline, it is also possible to give a single station
name (possibly wildcarded) meaning that all baselines containing
that station will be selected. For example: baseline=[RS*,CS*]
selects all baselines containing remote or core stations. Please note
that an extra bracket pair is needed to specify baselines between RS
and CS like in baseline=[ [RS*,CS*] ] It is a bit hard to select
international stations using this syntax.

2. The casacore MSSelection baseline syntax is described in this note
and Casacore note 263. The advantage of this syntax is that it is
more concise and that besides a station name pattern, it is possible
to give a station number. The examples above can be expressed as:
baseline=CS001&RS003;CS002&RS005 for baseline CS001-RS003
and CS002-RS005
baseline=CS001,CS002&RS003,RS005 for CS001-RS003, CS001-
RS005, CS002-RS003, and CS002-RS005
baseline=RS*&&CS* for baselines (also auto-corr) between RS and
CS stations.
baseline=8&12 baseline between station number 8 and 12.
Note that & means cross-correlations, && means cross and auto, &&&
means auto only.
International stations can be selected most easily using negation. E.g.
use baseline=^[CR]S*&&* to select all baselines containing an
international station.
use baseline=^[CR]S*&& to select baselines containing ONLY
international stations.

Sometimes the baselines between the HBA ears of the same station
should be deselected, which can be done using the following string
^/(.*)HBA0&\1HBA1/
Without the up-arrow it will select such baselines.

Note: in the msin step only the second way is possible.
Also note that, currently, only the first way works properly when
selecting baselines after a station has been added. The reason is that
the second way looks in the original ANTENNA table to find matching
station names, thus will not find the new station.

https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=public:user_software:documentation:msselection.pdf
https://www.astron.nl/lofarwiki/lib/exe/fetch.php?tok=b5be53&media=http%3A%2F%2Fcasacore.github.io%2Fcasacore-notes%2F263.html


Last
update:
2018-05-25
06:14

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

https://www.astron.nl/lofarwiki/ Printed on 2025-07-05 06:01

From:
https://www.astron.nl/lofarwiki/ - LOFAR Wiki

Permanent link:
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

Last update: 2018-05-25 06:14

https://www.astron.nl/lofarwiki/
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp&rev=1527228871

	[DPPP]
	DPPP
	UVWFlagger
	Description of baseline selection parameters



