2025-10-26 18:47 1/35 DPPP

DPPP

Important

A newer version of this documentation is available at https://www.astron.nl/citt/DP3

Old documentation

DPPP (the Default Preprocessing Pipeline, previously NDPPP for New Preprocessing Pipeline) is the
LOFAR data pipelined processing program. It can be used to do all kind of operations on the data in a
pipelined way, so the data are read and written only once.

DPPP started as a new and faster version of IDPPP. The original differences can be seen here.

DPPP preprocesses the data of a LOFAR observation by executing steps like flagging or averaging.
Such steps can be used for the raw data as well as the calibrated data by defining the data column to
use. One or more of the following steps can be defined as a pipeline. DPPP has an implicit input and
output step. It is also possible to have intermediate output steps.

DPPP comes with quite some predefined steps, but it is possible to plugin arbitrary steps, either
implemented in C++ or Python.

The following steps are possible:

* Flagging and Filtering
o AOFlagger for automatic flagging in time/freq windows using Andre Offringa's advanced
aoflagger.

Preflagger to flag given baselines, time slots, etc.

UVWFlagger to flag based on UVW coordinates, possibly in the direction of another

source.

MADFlagger for automatic flagging in time/freq windows based on median filtering.

Filter to filter on baseline and/or channel (only the given baselines/channels are kept).

The reader step has an implicit filter.

e Averaging

o Averager to average data in time and/or freq.
e Phase Shifting
o PhaseShift to shift data to another phase center.
¢ Demixing to remove strong sources (A-team) from the data.
o Demixer to demix in the old way.
o SmartDemixer to demix in a new, smarter way.
e Station summation
o StationAdder to add stations (usually the superterp stations) forming new station(s) and
baselines.

e Counter to count the number of flags per baseline, frequency, and correlation. A flagging step
also counts how many visibilities it flagged. Counts can be saved to a table to be plotted later
using function plotflags in python module Lofar.dppp.

e Data calibration and Data scaling

o ApplyCal to apply an existing calibration to a MeasurementSet.
o GainCal to calibrate gains using StefCal.

[¢]

[¢]

o

o

LOFAR Wiki - https://www.astron.nl/lofarwiki/

https://www.astron.nl/citt/DP3
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:tools:dppp:diff

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

o DDECal to calibrate direction dependent gains.
o Predict to predict the visibilities of a given sky model.
o H5ParmPredict to subtract multiple directions of visibilities corrupted by an instrument
model (in H5Parm) generated by DDECal.
o ApplyBeam to apply the LOFAR beam model, or the inverse of it.
o SetBeam to set the beam keywords after prediction.
o ScaleData to scale the data with a polynomial in frequency (based on SEFD of LOFAR
stations).
o Upsample to upsample visibilities in time
o Out to add intermediate output steps
* Interpolate for improving the accuracy of data averaging.
e User defined steps provide a plugin mechanism for arbitrary steps implemented in C++.
e Python defined steps provide a plugin mechanism for arbitrary steps implemented in Python.

The input is one or more (regularly shaped) MeasurementSets (MSs). The data in the given column
are piped through the steps defined in the parset file and finally written (if needed). It makes it
possible to, say, flag at the full resolution, average, flag on a lower resolution, average further, and
finally write the data.

Regularly shaped means that all time slots in the MS must contain the same baselines and channels.
DPPP can handle only one spectral window. If the MS has multiple spectral windows, one has to be
selected.

If multiple MSs are given as input, their data are combined in frequency. It means that the time,
phase direction, etc. of the different MSs have to be the same. Note that other steps (like averaging)
can still be used.

When combining MSs (thus combining subbands), it is possible that one or more of them do not exist.
Flagged data will be inserted for them. The missing frequency info is deduced from the other
subbands. Note that in order to insert missing subbands in the data, the names of the missing MSs
have to be given at the right place in the list of MS names. Otherwise DPPP does not know that
subbands are missing.

The output can be a new MeasurementSet, but it is also possible to update the flags if the input is a
single MS. If averaging or phase-shifting to another phase center is done, the only option is to create
a new MeasurementSet.

At the end the run time is shown. Note that on a multi-core machine the user time can exceed the
elapsed time (user time is counted per core). By default the percentage of time each step took is also
shown.

The AOFlagger, MADFlagger, and Demixer, by far the most expensive parts of DPPP, can run multi-
threaded if DPPP is built with OpenMP. It is possible to define the number of threads to use by the
global key numthreads. Is that is not set, it uses the environment variable OMP_NUM THREADS. If
also that variable is undefined, an DPPP run uses as many threads as there are CPU cores. Thus if
multiple DPPP runs are started on a machine, the default total number of threads will exceed the
number of CPU cores.

MeasurementSet Access

e The 'msin' step defines which MS and which DATA column to use. It is possible to specify

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 18:47

2025-10-26 18:47 3/35 DPPP

multiple MSs using a glob-pattern or a vector of MS names.

e If multiple MSs are given, they will be concatenated in frequency. It means that all MSs must
have the same times, baselines, etc. Flagged data can be inserted for MSs that are specified,
but do not exist.

e |t is possible to select baselines and/or a band (spectral window) and/or skip leading or trailing
channels. This is the same for each input MS.

e Optionally proper weights can be calculated using the auto-correlation data.

e |t sets flags for invalid data (NaN or infinite).

e Dummy, fully flagged data with correct UVW coordinates will be inserted for missing time slots
in the MS. This can only be done if a single input MS is used.

e Missing time slots at the beginning or end of the MS can be detected by giving the correct start
and end time. This is particularly useful for the imaging pipeline where BBS requires that the
MSs of all subbands of an observation have the same time slots. When updating an MS, those
inserted slots are temporary and not put back into the MS.

e The 'msout' step step defines the output. If a band is selected, the output MS (including its
SPECTRAL_WINDOW subtable) contains that band only (its id is 0).

The input MS is updated if no output name is given or if the output name is equal to the input
name or equal to a dot.

The calculation of the weights is done as follows.

Weight[ANT1 POL1, ANT2 POL2] = N / (autocorr[ANT1 POL1] *
autocorr[ANT2 POL2])
N = EXPOSURE * CHAN WIDTH * WGHT

where WGHT is the weight put in by RTCP (number of samples used / total number of samples).
This note discusses weighting in some more detail.

Flagging

It is important to realize that a MeasurementSet contains columns FLAG and FLAG_ROW to indicate if
data are flagged. If FLAG_ROW is set, all data in that row are flagged. DPPP will set FLAG_ROW if all
FLAG are set (and vice-versa).

When clearing the flags manually, it is important to realize that both columns have to be cleared. For
example:

tagl 'update my.ms set FLAG=F, FLAG_ ROW=F'

DPPP flagging behaviour is as follows.

e |f one correlation is flagged, all correlations will be flagged (e.g. XX,YX,YY are flagged if XY is
flagged).

e The msin step flags data containing NaNs or infinite numbers or if FLAG_ROW is set.

e An AOFlagger step can be used to flag using Andre Offringa's rficonsole code. Because DPPP
always reads entire time slots, the flagging can be done on limited time windows only
(depending on the available memory). An overlap can be defined to reduce boundary effects.
By default QUALITY subtables will be created containing statistical flagging quality information.
They can be inspected using tools like aogplot.

The default strategy works well for HBA data, but not for LBA data. The strategy LBAdefault
should be used for it.

LOFAR Wiki - https://www.astron.nl/lofarwiki/

https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=public:user_software:documentation:ndppp_weights.pdf

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

e APreflagger step can be used to flag (or unflag) on time, baseline, elevation, azimuth,
simple uv-distance, channel, frequency, amplitude, phase, real, and imaginary. Multiple values
(or ranges) can be given for one or more of those keywords. A keyword matches if the data
matches one of the values. The results of all given keywords are AND-ed. For example, only
data matching given channels and baselines are flagged.

Keywords can be grouped in a set making it a single (super) keyword. Such sets can be OR-ed
or AND-ed. It makes it possible to flag, for example, channel 1-4 for baseline A and channel
34-36 for baseline B. Here it is explained in a bit more detail.

e A UVWFlagger step can be used to flag on UVW coordinates in meters and/or wavelengths. It is
possible to base the UVW coordinates on a given phase center. If no phase center is given, the
UVW coordinates in the input MS are used.

 AMADFlagger step can be used to flag on the amplitudes of the data. It flags based on the
median of the absolute difference of the amplitudes and the median of the amplitudes. It uses a
running median with a box of the given size (number of channels and time slots). It is a rather
expensive flagging method with usually good results.

The flagging parameters can be given as an expression to make them dependent on baseline
length.

It is possible to specify which correlations to use in the MADFlagger. Flagging on XX only, can
save a factor 4 in performance.

Furthermore it is possible to only flag the auto-correlations and apply the results to the cross-
correlations with a baseline length within optionally given limits.

Averaging

e Unflagged visibility data are averaged in frequency and/or time taking the weights into account.
New weights are calculated as the sum of the old weights.

Some older LOFAR MSs have weight 0 for unflagged data points. These weights are set to 1.

e The UVW coordinates are also averaged (not recalculated).

e |t fills the new column LOFAR _FULL RES_FLAG with the flags at the original resolution for the
channels selected from the input MS. It can be used by BBS to deal with bandwidth and time
smearing.

e Averaging in frequency requires that the average factor fits integrally. E.g. one cannot average
every 5 channels when having 256 channels.

e When averaging in time, dummy time slots will be inserted for the ones missing at the end. In
that way the output MeasurementSet is still regular in time.

e An averaged point can be flagged if too few unflagged input points were available

Demixing

Demixing (or Smart Demixing explained below) is a faster and more flexible way of the old demixing
python script to demix and subtract strong sources (A-team). Jones matrices can be estimated for the
direction of the subtract-sources, model-sources, and the optional target-source.

e |t is possible to have different averaging for the demix and subtract step.

e Selected (e.g. shorter) baselines can be demixed (others will be averaged only). By default only
the cross-correlations are used.

e Four different direction types can be given:

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 18:47

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:tools:dppp:preflaggerandor

2025-10-26 18:47 5/35 DPPP

o The subtract-sources are subtracted from the data. They must have a source model.

o The model-sources can be given to take the contribution of other strong sources into
account when solving for the gains. They must have a source model as well. The target
source should NOT be part of this list.

o The other-sources directions are taken into account when demixing. They are projected
away when solving for the gains.

o If the target source is given, it must have a source model and no other-sources can be
given. If no target source is given, the target direction can be projected away like the
extra-sources. Weak target sources should not be projected away.

¢ A source model mentioned above is the patch name in the SourceDB (e.g. CasA). At the
moment only point and Gaussian sources are supported. The direction used for demixing is the
centroid of the sources that belong to the patch. The direction for an extra source (for which no
model is used) can be given as a parameter if that is needed.

e |t is important to note that the target source model must NOT be given using the subtract-
sources or model-sources. If it has to be used, give it using the targetsource parameter.

e The Jones matrices will be estimated jointly for all directions, so better results are expected if
the sources are close to the target. However, joint estimation of the Jones matrices for all
directions is slower than estimating the Jones matrices for each direction separately. In the near
future an option will be added to estimate the Jones matrices for each direction separately like
the old demixing script is doing.

Smart Demixing

Smart Demixing does demixing as above, but in a smarter way using a scheme developed by Reinout
van Weeren. For each time chunk (say 2 minutes) it is decided how to demix.

It needs three source models, which are made from a text file using makesourcedb. Note that for
performance it is best to run makesourcedb with parameter outtype=blob.

¢ A detailed model of the A-team sources used in the solve and subtract steps.

¢ A coarse model of the A-team sources used in the estimate step. If not given, the detailed
model will be used.

¢ A model of the target field. Usually the user can create it from the GSM using gsm.py.

Smart demixing works as follows:

e If an A-team source is at about the same position as a source in the target model, the source is
removed from the A-team list and its detailed model replaces the source in the target model
used in the solve step (not for the estimate step).

¢ Using the coarse A-team model, the visibilities are estimated per baseline for each A-team
source. By default the beam model is applied to get the apparent visibilities. The sources and
baselines are selected for which the maximum amplitude exceeds a given threshold. A
source/station will be solved for if the station appears in at least N of the selected baselines for
that source. A detailed source model is used in that step to get as accurate gains as possible.

e The visibilities of the target are estimated in a similar way using the target model. The target is
included in the solve if its maximum amplitude exceeds a threshold or if the amplitude ratio
Target/Ateam exceeds a threshold. The target is also included if it is close to an A-team source
and the ratio exceeds another (smaller) threshold. Otherwise, the target is ignored (if close) or
deprojected.

A detailed decision tree that the smart demixing algorithm follows is available here.

LOFAR Wiki - https://www.astron.nl/lofarwiki/

https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:makesourcedb
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:gsm.py
https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=engineering:software:tools:demixchart.pdf

Last

;83??8:2_26 public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

14:18

When solving for the complex gains of the selected A-team sources, the detailed A-team model is
used to get the correct gains. Note that by default the sources/stations not solved for are still used in
the solve step. There Jones matrices will have a small gain value on the diagonal and zeroes for the

off-diagonal values.
At the end a log is produced showing how the demixing behaved. It shows:

e percentage of converged solves and the average number of iterations used for them.
percentage of times the target was included, deprojected, and ignored.

percentage of times a source/station was solved for (thus matched the threshold/ratio criteria).
average and standard deviation of percentage amplitude subtracted per source per baseline

Phase shifting

e Data can be shifted to another phase center.
A shift step can shift back to the original phase center (by giving an empty center). If that is
done by the last shift step, no new MS needs to be created.

Upsample

e Upsampling data can be useful for at least one use case. Consider data that has been
integrated for two seconds, by a correlator (the AARTFAAC correlator) that sometimes misses
one second of data. The times of the visibilities will then look like [0, 2, 4, 7, 9, 12], each having
integration time 2 seconds. DPPP will automatically fill missing time slots, which will lead to
times [0, 2, 4, 6, 7,9, 11, 12]. This is still a nonuniform time coverage, which is not desirable.
Calling the upsample step with timestep=2 on this data will create times [0, 1, 2, 3, 4, 5, 6, 7,
8,9, 10, 11, 12, 13] (it will remove the inserted dummy time slots that overlap, i.e. at 7 and 12).
This data is then useful for further processing, e.g. averaging to 10 seconds.

Station summation

¢ One or more new stations can be defined from a list of existing stations. An existing station can

occur in only one new station.
e The data of baselines containing only one of the stations are added to form a new baseline.

e Optionally the auto-correlations can be added to form a new auto-correlation 'baseline'.
e The data can be added with or without weight.
e Optionally averaging instead of summing can be done.

Data scaling

e The data can be scaled with a polynomial in frequency to correct for the SEFD of the LOFAR

stations.

e The default coefficients have been determined empirically. It is possible to specify them per
station.

e |t can take the number of used dipoles/tiles into account when scaling (e.qg. for
remote/international or for failing ones).

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 18:47

2025-10-26 18:47 7/35 DPPP

Filtering

e Similar to the msin step a filter makes it possible to keep only the given channels and/or
baselines.

e By default, a station is always kept in the ANTENNA table, even if all its baselines are removed.
This can be changed with the key remove.

Flag statistics and plotting

Several steps show statistics about flagged data points.

e A MADFlagger and AOFlagger step show the percentage of visibilities flagged by that flagging
step. It shows:
o The percentages per baseline and per station.
o The percentages per channel.
o The number of flagged points per correlation, i.e. which correlation triggered the flagging.
This may help in determining which correlations to use in the MADFlagger.

e A UVWFlagger and PreFlagger step show the percentage of visibilities flagged by that flagging
step. It shows percentages per baseline and per channel.

e The msin step shows the number of visibilities flagged because they contain a NaN or infinite
value. It is shown which correlation triggered the flagging, so usually only the first correlation is
really counted.

¢ A Counter step can be used to count and show the number of flagged visibilities. Such a step
can be inserted at any point to show the cumulative number of flagged visibilities. For example,
it can be defined as the first and last step to know how many visibilities have been flagged in
total by the various steps.

e Each step giving flagging percentages can save the percentages per frequency and per station
to a table. The extension . flagfreq is used for the table containing the flags per frequency;
the extension . flagstat for the flags per station. The full basename of the table is the main
part of the MS followed by <stepname> followed by the extension. The path for these tables
can be specified in the parset file.

e The plotflags function in the Python module Lofar.dppp can be used to plot those tables. It
can plot multiple subbands by giving it a list of table names. The flags per station will be
averaged for those subbands.

Intermediate output step

The step out can write data to disk at an intermediate stage. It takes the same arguments as the
'msout’ step. As an example, the following reduction will flag, save flagged data at high resolution,
then average and save the result in another measurement set. On the averaged data, it will also
apply a calibration table and save that in the CORRECTED DATA column.

msin=L123.MS
steps=[aoflag,outl,average,out2,applycal]

Write out flagged data at full resolution
outl.type=out

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last
update:
2021-02-26
14:18

outl.name=L123-flagged.MS

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

average.timestep=4

Write out averaged data
out2.type=out
out2.name=L123-averaged.MS
out2.datacolumn=DATA

applycal.parmdb=instrument.parmdb

Write the corrected data to CORRECTED DATA
msout=L123-averaged.MS
msout.datacolumn=CORRECTED DATA

User defined step

Besides the predefined DPPP steps like AOFlagger, etc., it is possible to use any user-defined DPPP
step implemented in C++ or Python.

If implemented in C++ such a step has to reside in a shared library, that will dynamically be loaded
by DPPP. The name of such a shared library has to be the step type name. DPPP will try to load the
library libdppp_xxx.so (or .dylib on OS-X) for a step type xxx.

To make this a bit more flexible it is possible to define multiple steps in a single shared library. In such
a case the step type name has to consist of 2 parts separated by a dot. The first part is the library
name, the second part the step type in that library.

For example:

steps=[averager, mystepl, mystep2]
mystepl.type = mystep.stepa
mystep2.type = mystep.stepb

defines two user steps. Both step implementations reside in library libmystep.so.
A description and example of a dynamically loaded step can be found in the LOFAR source code
repository in LOFAR/CEP/DPPP/TestDyDPPP.

Python defined step

The mechanism described above is used to make it possible to implement a user step in Python. The
step type has to be pythoDPPP and the name of the Python module and class containing the code
have to be given. DPPP will load the library Libdppp_ pythonDPPP. so, which will start an embedded
Python shell, load the module, and instantiate an object of the class.

A detailed description is available.

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 18:47

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:tools:dppp:pythonstep

2025-10-26 18:47 9/35 DPPP

ParSet File

Similar to most LOFAR programs, the parameters for the DPPP program are given in a so-called parset
file. Note that it is possible to add parameters or overwrite parameters, defined in the parset file,
using command line arguments. For example:

DPPP DPPP.pset parml=valuel parm2=value2 ...

The steps to perform have to be defined in the parset file. They are executed in the given order,
where the data are piped from one step to the other until all data are processed. Each step has a
name to be used thereafter as a prefix in the keyword names specifying the type and parameters of
the step.

The most basic parset is as follows. It copies the DATA column of the MS and flags NaN and infinite
data.

msin = ~/SBO.MS
msout = SBO _DPPP.MS
steps=[]

The following example is more elaborate. It flags (using a median flagger), averages all channels,
flags the result of the average, and finally averages in time
Note that 'msin' and 'msout' can be seen as an implicit first and last step.

msin = ~/SB0O.MS

msin.startchan = 8

msin.nchan = 240

msin.datacolumn = DATA # is the default

msout = "SBO DPPP.MS" # if empty, the input MS is updated and
no averaging steps can be done
msout.datacolumn = DATA # 1s the default

steps = [flagl,count,avgl, flag2,avg2, count]
flagl.type=madflagger

flagl.threshold=1

flagl. freqwindow=31

flagl.timewindow=>5

flagl.correlations=[0, 3] # only flag on XX and YY
flagl.count.save = true # save flag percentages
flagl.count.path = $HOME # to a table in $HOME

avgl.type = average
avgl.freqgstep 240
avgl.timestep 1 # is the default

flag2.type=madflagger
flag2.threshold=2
flag2.timewindow=51

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

avg2.type = average
avg2.timestep = 5

Plotting the flag percentages, saved by the first MADFlagger step, could be done in python like:

import lofar.dppp as ld
ld.plotflags ('$HOME/SBO flagl.flagfreq') # step name was flagl

Description of all parameters

The parameters in the parset are divided into several groups like input (msin), output (msout),
madflagger, average, preflagger, and uvwflagger. Because multiple flagging and averaging steps can
be specified, their parameters have to be prefixed with the step name as shown in the example
above.

Parameter |type default description
General

Names of the steps to perform. Each step has to
be defined using the step name as a prefix.

The step type parameter defines the type of step
(averager, madflagger, preflagger, uvwflagger,
counter). The step type defaults to the name of the
step, which is especially handy for count steps.

string msin and msout are implicit steps which should
steps .
vector not be given here.
An empty vector [] means that the input MS is
copied to the output MS while flagging NaN and
infinite numbers.
Note that a step name can be used more than
once meaning that the same step will be executed
multiple times (e.g., multiple times count).
numthreads |int ${OMP_NUM_THREADS} Maximum number of threads to use.
showprogress|bool true Show a progress bar?
showcounts |bool true Show flagging statistics?
At the end the percentage of elapsed time each
showtimings |bool true step took can be shown; the overall time is always
shown.
What to do if parameters in the ParSet file are not
used.

-1 means ignore.

0 means give a warning showing those
checkparset |integer |0 parameters. In this way misspelled parameters can
be detected.

1 means give an error and stop.

For backward compatibility False (0) and True (1)
can also be given.

If false, all DPPP messages are written on stdout. If
true, the logging framework is used.

uselogger bool false

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 18:47

2025-10-26 18:47

11/35 DPPP

Counter

<step>.type

string

Case-insensitive step type; must be 'counter' (or 'count').
Note that the type defaults to the step name, so if step name
count is used, nothing more needs to be specified.

<step>.showfullyflagged|bool

false

If true, all fully flagged baselines are shown in the baseline
selection format using their antenna indices (not names). For
example: 0&1; 3&7

<step>.save

bool

false

If true, the flag percentages per frequency are saved to a table
with extension . flagfreq and percentages per station to a
table with extension . flagstat. The basename of the table is
the MS name (without extension) followed by the stepname
and extension.

<step>.path

string

un

The directory where to create the flag percentages table. If
empty, the path of the input MS is used.

<step>.warnperc

double|0

If > 0, print an extra message for each baseline or channel
with a percentage flagged higher than this value. Such a
message line can be easily grep-ed.

<step>.flagdata

bool

false

If COUNT is the only step in an DPPP run, the data won't be
read, so unflagged invalid data (NaN. infinite) won't be noticed
and counted as flagged. Setting this flag forces DPPP to read
and check the data.

Input

msin
msin.name

string

Name of the input MeasurementSets. If a single
name is given, it can be a glob-pattern (like
L23456_SAP000_SB*) meaning that all MSs
matching the pattern will be used. A glob-pattern
can contain *, ?, [1, and {} pattern characters (as
used in bash).

If multiple MSs are to be used, their data are
concatenated in frequency, thus multiple
subbands are combined to a single band. In
principle all MSs should exist, but if
'missingdata=true' and 'orderms=false' flagged
zero data will be inserted for missing MS(s) and
their frequency info will be deduced from the
other MSs.

msin.sort

bool

false

Does the MS need to be sorted in TIME order?

msin.orderms

bool

true

Do the MSs need to be ordered on frequency? If
true, all MSs must exist, otherwise they cannot be
ordered. If false, the MSs must be given in order
of frequency.

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

msin.missingdata

bool

false

true = it is allowed that a data column in an MS
does not exist. In that case its data will be 0 and
flagged. It can be useful if the CORRECTED_DATA
of subbands are combined, but a BBS run for one
of them failed.

If 'orderms=false’, it also makes it possible that a
MS is specified but does not exist. In such a case
flagged data will be used instead. The missing
frequency info will be deduced from the other
MSs where all MSs have to have the same
number of channels and must be defined in order
of frequency.

msin.baseline

string

Baselines to be selected (default is all baselines).
See Description of baseline selection parameters.
Only the CASA baseline selection syntax as
described in this note can be used.

msin.band

integer

1
=

Band (spectral window) to select (<0 is no
selection). This is mainly useful for WSRT data.

msin.startchan

integer

First channel to use from the input MS (channel
numbers start counting at 0). Note that skipped
channels will not be written into the output MS. It
can be an expression with “nchan” (nr of input
channels) as parameter. E.g.

nchan/32

will be fine for LOFAR observations with 64 and
256 channels.

msin.nchan

integer

Number of channels to use from the input MS (0
means till the end). It can be an expression with
“nchan’ (nr of input channels) as parameter. E.g.
15*nchan/16

msin.starttime

string

first time in MS

Center of first time slot to use; if < first time in
MS, dummy time slots are inserted. A date/time
must be specified in the casacore MVTime format,
e.g. 19Feb2010/14:01:23.817

msin.starttimeslot

int

Starting time slot. This can be negative to insert
flagged time slots before the beginning of the MS.

msin.endtime

string

last time in MS

Center of last time slot to use; if > last time in
MS, dummy time slots are inserted.

msin.ntimes

integer

Number of time slots to use (0 means till the
end).

msin.useflag

bool

true

Use the current flags in the MS? If false, all flags
in the MS are ignore and the data (except NaN
and infinite values) are assumed to be good and
will be used in later steps.

msin.datacolumn

string

DATA

Data column to use, i.e. the name of the column
in which the visibilities are written.

msin.weightcolumn

string

WEIGHT_SPECTRUM

or WEIGHT

Weight column to use. Defaults to
WEIGHT_SPECTRUM if this exists, otherwise the
WEIGHT column is used.

msin.modelcolumn

string

MODEL_DATA

Model data column. Currently only used in gaincal
and ddecal.

https://www.astron.nl/lofarwiki/

Printed on 2025-10-26 18:47

https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=public:user_software:documentation:msselection.pdf

2025-10-26 18:47

13/35 DPPP

msin.autoweight bool |[false

Calculate weights using the auto-correlation
data? It is meant for setting the proper weights
for a raw LOFAR MeasurementSet.

msin.forceautoweight/bool [false

In principle the calculation of the weights should
only be done for the raw LOFAR data. It appeared
that sometimes the autoweight switch was
accidently set in a DPPP run on already dppp-ed
data. To make it harder to make such mistakes,
the forceautoweight flag has to be set as well
for MSs containing dppp-ed data.

Output

msout
msout.name

string

Name of new output
MeasurementSet; if empty, the
input MS is updated. The other
msout parameters are not
applicable (apart from
countflag).

Normally an update is only done
if a step is given that can change
the data (e.g. PreFlagger).
However, a name "' or a name
equal to the name of the input
MS means that the input MS will
always be updated, even if no
step is given. This is useful if only
flagging of NaN-s in the MS
needs to be done.

Note that when doing averaging,
the input MS cannot be updated.

msout.overwrite

bool

false

When creating a new MS,
overwrite if already existing?

msout.datacolumn

string

DATA

The column in which to write the
data. When creating a new
MeasurementSet, only column
DATA can be used. When
updating the input
MeasurementSet, any column
can be used. If not existing, it will
be created first.

msout.weightcolumn

string

WEIGHT_SPECTRUM

The column in which to write the
weights. When creating a new
MeasurementSet, only
WEIGHT_SPECTRUM can be used.
When updating the input
Measurementset, any column
can be used. If not existing, it will
be created first.

msout.writefullresflag bool [true Write the full resolution flags?
For expert user: tile size (in
msout.tilesize integer|{1024 Kbytes) for the data columns in

the output MS.

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last

update: public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

2021-02-26
14:18
For expert user: maximum
msout.tilenchan integer|(8 number of channels per tile in
output MS.
msout. clusterdesc string | If not empty, create the VDS file
' g using this ClusterDesc file.
Directory where to put the VDS
msout.vdsdir string |“” file; if empty, the MS directory is

used.

What storage manager to use.
When empty (default), the data
will be stored uncompressed.
When set to “dysco”, the data
will be compressed. Settings
below will set the compression
settings; see the Dysco wiki and
the paper for more info. The
default settings are reasonably
conservative and safe.

msout.storagemanager

string
msout.storagemanager.name

Number of bits per float used for
columns containing visibilities.
Can be set to zero to compress
weights only.

msout.storagemanager.databitrate |integer|10

Number of bits per float used for
WEIGHT _SPECTRUM column. Can
be set to zero to compress data
only. Note that compressing
weights will set all polarizations
to the same weight (determined
by the minimum weight over the
polarizations).

msout.storagemanager.weightbitrate |integer|12

Assumed distribution for
compression; “Uniform”,
“TruncatedGaussian”,
“Gaussian” or “StudentsT".

msout.storagemanager.distribution |string |“TruncatedGaussian”

Truncation level for compression
msout.storagemanager.disttruncation|double |2.5 with the Truncated Gaussian
distribution.

Compression normalization

msout.storagemanager.normalization |string |“AF method: AF, RF or Row.

Filter

<step>.type string Case-insensitive step type; must be 'filter’

First channel to use from the input MS (channel numbers start
counting at 0). Note that skipped channels will not be written into
the output MS. It can be an expression with “nchan’ (nr of input
channels) as parameter. E.g.

nchan/32

will be fine for LOFAR observations with 64 and 256 channels.

<step>.startchan|integer |0

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 18:47

https://github.com/aroffringa/dysco/wiki
https://arxiv.org/abs/1609.02019

2025-10-26 18:47 15/35 DPPP
Number of channels to use from the input MS (0 means till the end).
<step>.nchan |integer |0 It can be an expression with "nchan’ (nr of input channels) as
parameter. E.g.
15*nchan/16
<step>.baseline |string «n |Baselines to keep. See Description of baseline selection
parameters.
double |,, |Baselines to keep. See Description of baseline selection
<step>.blrange
vector parameters.
<step>.corrtype |string “" |Correlation type to match? Must be auto, cross, or an empty string.
If true, the stations not used in any baseline will be removed from
the ANTENNA subtable and the antenna ids in the main table will be
renumbered accordingly. To have a consistent output
<step>.remove | bool false MeasurementSet, other subtables (FEED, POINTING, SYSCAL,
P> LOFAR ANTENNA FIELD, LOFAR_ELEMENT FAILURE, and
QUALITY _BASELINE_STATISTIC) will also be updated.
Note that stations filtered previously (e.g. using msselect) will also
be removed, even if no baseline selection is done in the filter step.

Upsample

<step>.type string

Case-insensitive step type; must be 'upsample’

<step>.timestep|integer

Number of times into which each timestep will be expanded

AOFlagger

<step>.type stri

ng

Case-insensitive step type; must be 'aoflagger’ (or 'aoflag').

<step>.count.save |bool

false |table with extension . flagstat. The basename of the table is

If true, the flag percentages per frequency are saved to a table
with extension . flagfreq and percentages per station to a

the MS name (without extension) followed by the stepname and
extension.

un

The directory where to create the flag percentages table. If

<step>.count.path Istring empty, the path of the input MS is used.
The name of the strategy file to use. If no name is given, the
default strategy is used which is fine for HBA. For LBA data the
. strategy LBAdefault should be used.
<step>.strategy string

A strateqy file is looked up as given. If not found, it is looked up
in $LOFARROOT/share/rfistrategies that contains the standard
strategies.

<step>.memoryperc |integer

0

If >0, percentage of the machine's memory to use. If

memo rymax nor memoryperc is given, all memory will be used
(minus 2 GB (at most 50%) for other purposes). Accepts only
integer values (LOFAR v2.16). Limiting the available memory too
much affects flagging accuracy; in general try to use at least 10
GB of memory.

<step>.memorymax |double

0

Maximum amount of memory (in GB) to use. =0 means no
maximum. As stated above, this affects flagging accuracy.

<step>.timewindow |integer

0

Number of time slots to be flagged jointly. The larger the time
window, the better the flagging performs. 0 means that it will be
deduced from the memory to use. Note that the time window
can be extended with an overlap on the left and right side to
minimize possible boundary effects.

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last

;83??8:2_26 public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

14:18

0 or If >0, percentage of time window to pe aFjded to the left and

<step>.overlapperc |double 1 right side for everlap purposes (to minimize boundary effects). If

overlapmax is not given, it defaults to 1%.
<step>.overlapmax |integer|0 Maximum overlap value (0 is no maximum).
<step>.autocorr bool [true |Flag autocorrelations?
<step>.pulsar bool |false |Use flagging strategy optimized for pulsar observations?
<step>.pedantic bool |false \Be more pedantic when flagging?
<step>.keepstatistics|bool |true |Write the quality statistics?

MADFlagger

<step>.type string Case-insensitive step type; must be 'madflagger' (or ‘madflag’).

If true, the flag percentages per frequency are saved to a table
with extension . flagfreq and percentages per station to a
<step>.count.save |bool false |table with extension . flagstat. The basename of the table is
the MS name (without extension) followed by the stepname
and extension.

«»n |The directory where to create the flag percentages table. If
empty, the path of the input MS is used.

The flagging threshold that can be baseline dependent.

It can be any (TaQL-like) expression that evaluates to a float. In
the expression the variable 'bl' can be used which is the
baseline length (in meters). In this way the value can be made

<step>.count.path |string

<step>.threshold float 1 baseline dependent. For example:
iif(bl<100, 0.5, iif(bl<500, 0.75, iif(b1<1000,
0.9, 1)))

defines the threshold between the baseline lengths 100, 500,
and 1000 meter.

Number of times in the median box. If not odd, 1 is subtracted.
It is silently reduced if exceeding the actual number of time
<step>.timewindow |integer |1 slots.

In a way similar to 'threshold' it can be made baseline length
dependent.

Number of channels in the median box. If not odd, 1 is
subtracted. It is silently reduced if exceeding the actual
<step>.freqwindow |integer |1 number of channels.

In a way similar to 'threshold' it can be made baseline length
dependent.

The correlations to use in the flagger; an empty vector means
all. They are handled in the order given; if the flagging
criterium holds for one correlation, the other correlations are
integer 0 not tested anymore. So if one knows that most RFl is found in
vector YY, then in XX and finally some in XY and YX, the vector should
be [3,0,1,2] because it makes the program run faster. Note
that the statistics printed at the end show how many flagged
data points have been found per correlation.

<step>.correlations

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 18:47

http://www.astron.nl/casacore/trunk/casacore/doc/notes/199.html

2025-10-26 18:47

17/35 DPPP

<step>.applyautocorr|bool False

True means that the MADFlagger is used on the auto-
correlations only. The resulting flags are applied to the cross-
correlations, thus data are flagged where the corresponding
auto-correlations are flagged.

An error is given if set to True, while the MS does not contain
auto-correlations.

Minimum baseline length (in meters).
Only baselines with a length >= this minimum are flagged. If

<step>.blmin integer |-1 applyautocorr=true, the autocorrelations are applied to the
matching baselines only.
<step>.blmax integer |1e30|Maximum baseline length (in meters). It is similar to minimum.
PhaseShift
<step>.type string Case-insensitive step type; must be 'phaseshifter' (or 'phaseshift').
The RA and DEC (in J2000) of the new phase center. If an empty
string vector (i.e. []) is given, the original phase center is used. The RA and

<step>.phasecenter vector

DEC can be given in sexagesimal format or as a value followed by a
unit (default rad). For example, [12h31m34.5, 52d14m07.34] or

[187.5deg, 52.45deq]
Demixer
. Case-insensitive step type; must be
<step>.type string 'demixer' (or 'demixP). &
<step>.baseline string |“” Baselines to demix. See Description of

baseline selection parameters.

<step>.blrange

double] Baselines to demix. See Description of
vector baseline selection parameters.

—

<step>.corrtype

Baselines to demix. Correlation type to
string |cross match? Must be auto, cross, or an empty
string.

<step>.timestep

Number of time slots to average when

subtracting. It is truncated if exceeding the
actual number of times. Note that the data
itself will also be averaged by this amount.

integer|1l

<step>.freqstep

Number of channels to average when
subtracting. It is truncated if exceeding the
integer|1l actual number of channels. Note that the
data itself will also be averaged by this
amount.

<step>.demixtimestep

Number of time slots to average when
demixing. It is truncated if exceeding the
actual number of times. It defaults to the
averaging used for the subtract.

integer |timestep

<step>.demixfreqstep

Number of channels to average when
demixing. It is truncated if exceeding the
actual number of channels. It defaults to the
averaging used for the subtract.

integer |freqgstep

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last

update: public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

2021-02-26
14:18
Number of demix time slots (after
averaging) that are processed jointly in as
<step>.ntimechunk integer |#cores much a parallel way as possible. If subtract
uses different time averaging, it has to fit
integrally.
. The name of the SourceDB to use (i.e., the
<step>.skymodel string |sky

output of makesourcedb).

The name of the ParmDB to use. The
<step>.instrumentmodel string |instrument|ParmDB does not need to exist. If it does not
exist it will be created.

Names of the sources to subtract. If none
string are given, demixing comes down to
vector averaging. The sources must exist as
patches in the SourceDB.

Names of sources with models to take into
account when solving. the sources must
exist as patches in the SourceDB. Note that
] the target should NOT be part of this
parameter. If a model of the target has to be
used, it has to be given in parameter
targetsource.

It can be used to specify the name of the
source model of the target. If given, the
target source model (its patch in the
SourceDB) is taken into account when
solving; in this case parameter
othersources cannot be given. It cannot
be given if ignoretarget=true. If not
given, the target is projected away or
ignored (depending on parameter
ignoretarget).

<step>.subtractsources

string

<step>.modelsources
vector

—

<step>.targetsource string

false = project the target source away; true

<step>.ignoretarget bool [false — ignore the target

Names of sources of which the direction is
taken into account when demixing by
projecting the directions away. The direction
] needs to be specified if the source is
unknown (which is usually the case). It can
be done using parameters
<step>.<sourcename>.phasecenter.

string

<step>.othersources
vector

—

string Ir?)tﬁn The J2000 direction [ra,dec] of a source

vector SourceDp |91vVen above.

<step>.<sourcename>.phasecenter

If set to true, solutions of a time slot are
used as initial values for the next time slot.
<step>.propagatesolutions bool [true If set to false, the diagonal elements of the
Jones matrix are initialized to one and the
off-diagonal elements to zero.

The default and initial gain for the
<step>.defaultgain double 1.0 directional gains that are computed
internally.

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 18:47

2025-10-26 18:47

19/35 DPPP

<step>.maxiter

int 50

Maximum number of iterations used in the
LM solve

SmartDemixer

<step>.type

string

Case-insensitive step type; must be
'smartdemixer' (or 'smartdemix').

<step>.baseline

string

un

Baselines to demix. See Description of baseline
selection parameters.

<step>.blrange

double
vector

un

Baselines to demix. See Description of baseline
selection parameters.

<step>.corrtype

string

Cross

Baselines to demix. Correlation type to match?
Must be auto, cross, or an empty string.

<step>.target.baseline

string

“CS*&”

Baselines to use in prediction of median target
amplitude. See Description of baseline selection
parameters.

<step>.target.blrange

double
vector

un

Baselines to use in prediction of median target
amplitude. See Description of baseline selection
parameters.

<step>.target.corrtype

string

Cross

Baselines to use in prediction of median target
amplitude. Correlation type to match? Must be
auto, cross, or an empty string.

<step>.timestep

integer

Number of time slots to average when
subtracting. It is truncated if exceeding the
actual number of times. Note that the data itself
will also be averaged by this amount.

<step>.freqstep

integer

Number of channels to average when
subtracting. It is truncated if exceeding the
actual number of channels. Note that the data
itself will also be averaged by this amount.

<step>.demixtimestep

integer

timestep

Number of time slots to average when demixing.
It is truncated if exceeding the actual number of
times. It defaults to the averaging used for the
subtract.

<step>.demixfreqstep

integer

fregstep

Number of channels to average when demixing.
It is truncated if exceeding the actual number of
channels. It defaults to the averaging used for
the subtract.

<step>.chunksize

integer

demixtimestep

Number of time slots in a chunk for which it is
decided how to demix (which sources/stations to
use and how to deal with the target). It has to be
a multiple of parameter 'demixtimestep’.

<step>.ntimechunk

integer

#cores

Number of time chunks that are processed
jointly in as much a parallel way as possible.
Preferably it is a multiple of the number of cores.
Note that for a typical LOFAR observation the
data of a single time slot is about 4 MB. A typical
chunk size can be 2 minutes, thus 120 time slots
per core. For 24 cores this amounts to about 11
GB!!

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

<step>.ateam.skymodel

string

The detailed sky model of the A-team sources
used to solve for the complex gains. It is the
name of the SourceDB to use (i.e., the output of
makesourcedb).

<step>.estimate.skymodel

string

un

The coarse sky model of the A-team sources
used to estimate the visibilities when deciding
how to demix a chunk. It is the name of the
SourceDB to use (i.e., the output of
makesourcedb outtype=blob).

If no name is given, the detailed A-team model
will be used.

The SourceDB must contain the same sources as
the detailed model at about the same position.
The order can be different though.

<step>.target.skymodel

string

The sky model of the target. It is the name of
the SourceDB to use (i.e., the output of
makesourcedb).

<step>.target.delta

double

60

Angular distance uncertainty (in arcsec) to
determine if an A-team source is at the same
position as a target source.

<step>.instrumentmodel

string

instrument

The name of the ParmDB to use. The ParmDB
does not need to exist. If it does not exist it will
be created.

Note that the ParmDB is created after the output
MS is created, so it can be a subdirectory of the
output MS.

<step>.sources

string
vector

aun

Names of the A-team sources to use. If none are
given, all sources in the A-team sky model will
be used.

<step>.ateam.threshold

double

50 for LBA
5 for HBA

Take a source/baseline into account if its
maximum estimated amplitude > threshold.

<step>.minnbaseline

integer

Solve a source/station if the station occurs in at
least 'minnbaseline' baselines with amplitude >
ateam.threshold.

<step>.minnstation

integer

5

Solve a source if at least 'minnstation’' stations
are solvable for the source.

<step>.target.threshold

double

200 for LBA
100 for HBA

Include the target in the solve if its maximum
estimated amplitude > threshold.

<step>.ratiol

double

5

Include the target in the solve if the estimated
amplitude ratio Target/max(Ateam) > ratiol.

<step>.distance.threshold

double

60

Distance threshold (in degrees). The target is
close to the A-team if the angular distance
(scaled with freq) < threshold for any A-team
source (thus angdist*obsfreqg/reffreq <
threshold).

<step>.distance.reffreq

double

60e6

The 'reffreq' frequency used above.

<step>.ratio2

double

0.25

Include the target in the solve if the target is
close to the A-team and the estimated
amplitude ratio Target/min(Ateam) > ratio2.

<step>.maxiter

integer

50

Maximum number of iterations to use in the
solve.

https://www.astron.nl/lofarwiki/

Printed on 2025-10-26 18:47

2025-10-26 18:47

21/35 DPPP

<step>.propagatesolutions

If set to true, solutions of a time slot are used as
initial values for the next time slot. If set to
false, the diagonal elements of the Jones matrix

bool true are initialized to one and the off-diagonal

elements to zero. However, solutions will not be
transferred between chunks processed in
parallel.

<step>.defaultgain

The default gain to use for the real part of the
diagonal Jones elements for the unsolvable
sources/stations. Take into account that the

double |le-3 scale of the raw visibilities changed when

COBALT was adopted. In the case of data
correlated with BG/P, this parameter should be
tuned down (1e-8).

0 = only show basic demix statistics
1 = show for each time chunk how target is

<step>.verbose int 0 handled, which sources are solvable, and how
many stations.
>10 = various levels of debugging output.
Mainly for test purposes. True means that in the
<step>.solveboth bool false solvg only the baselines are usepl fqr which both
stations are solvable. Usually this gives worse
results.
Mainly for test purposes. It enforces the target
<step>.targethandling integer |0 handling. 1=include, 2=deproject, 3=ignore,
else=use smart way.
Mainly for test purposes. Apply the station beam
<step>.applybeam bool true in the estimate, solve, and subtract steps?
Mainly for test purposes. False means that the
<step>.subtract bool true subtract step is not done, thus only a solve of
the gains is done.
Averager
<step>.type string ICase-lns?nsVIuve ste;ln type; must be 'averager' (or equivalent
average' or 'squash’).
. . Number of time slots to average. It is truncated if exceeding the
<step>.timestep integer|1 .
actual number of times.
<step> freqstep integer|1 Number of channels to average. It is truncated if exceeding the
actual number of channels.
<step>.minpoints integer|o If number of averaged unflagged input points < minpoints, the

averaged point is flagged.

<step>.minperc

float

0|Like minpoints, but expressed as a percentage of timestep*freqstep.

<step>.timeresolution|float

Target time resolution, in seconds. If this is given, and bigger than
zero, it overrides <step>.timestep

<step>.fregresolution |float

Target frequency resolution, in Hz (or append “MHz" or “kHz" to
O|specify it in those units). If this is given, and bigger than zero, it
overrides <step>.freqgstep

StationAdder

<step>.type

string

Case-insensitive step type; must be 'stationadder' (or equivalent
'stationadd').

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last

;83??8%_26 public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

14:18

One or more names of new stations each followed by the list of
stations it consists of. A station name in the list can be a glob-like
pattern. Optionally such a pattern can be negated by a ! or *
meaning that names matching that pattern are excluded from the
selection so far. For example:

stations={ST6: 'CSOO[2-7]*"'} can be used to form the

<step>.stations |record superstation from all superterp stations.
{ST6:['CSOO[2-7]*"','1CSOO5*']} is similar, but excludes
CS005.

{ST001:[CS0OO1,CS0O2,CSO03],
ST002:[CS004,CS005,CS006]}

defines 2 new stations ST0O01 and ST002 consisting of the stations in
the lists following their names.

Flag a new data point if number of unflagged data points added is
less than minpoints.

Use the input data weights? False means all input visibilities have
weight 1.

Is a visibility of a new station the weighted average of its input
visibilities and its UVW the weighted average of the input UVWs?

<step>.autocorr |bool [false/Form new auto-correlations?
<step>.sumauto |bool |true Sum auto- or cross-correlations to form new auto-correlations?

nt 1

<step>.minpoints

<step>.useweights|bool |true

<step>.average |bool [true

ScaleData

<step>.type string Case-insensitive step type; must be 'scaledata’.

Zero or more glob-like patterns defining the stations for which the
corresponding coefficient vector has to be used. The coefficients of the

<step>.stations string 1 first matching pattern are used. Default coefficients (determined by
' vector Adam Deller for LBA and HBA) are used for stations not given. For
example:
stations=[CS*, RS*, *]
Zero or more vectors of coefficients defining a polynomial in frequency
(MHz). For example:
double coeffs=[[1.5, 0.7, 0.04], [1.7, 0.65], [1.2, 0.8]]
<step>.coeffs vector [1|The first vector results in a scale factor of 1.5 + 0.7*f + 0.04*f*f

where f is the channel frequency in MHz.
Note that an extra scaling can be applied taking into account the
number of used dipoles/tiles of a station (see next parameter).

This parameter determines if an extra scaling has to be applied to
correct for the number of tiles/dipoles actually used in a station. By
default this will be done for the stations using the default coefficients,
because those coefficients have been determined for an LBA station
<step>.scalesize|bool with 48 dipoles and HBA station with 24 tiles. By default it will not be
done for explicitly given coefficients, because it is supposed they are
determined specifically for that station.

Note that giving stations=* coeffs=1 scalesize=true will
correct for station size only.

PreFlagger

|<step>.type |string | |Case—insensitive step type; must be 'preflagger' (or 'preflag’). |

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 18:47

2025-10-26 18:47

23/35 DPPP

<step>.count.save

bool

false

If true, the flag percentages per frequency are saved to a
table with extension . flagfreq and percentages per station
to a table with extension . flagstat. The basename of the
table is the MS name (without extension) followed by the
stepname and extension.

<step>.count.path

string

un

The directory where to create the flag percentages table. If
empty, the path of the input MS is used.

<step>.mode

string

set

Case-insensitive string telling what to do with the flags of the
data matching (or not matching) the selection criteria given in
the other parameters.

'set’ means set the flags for the matching data. This is the
default mode.

‘clear' means clear the flags for the matching data. However,
flags of invalid data (NaN or zero) are always set.
'setcomplement’ or 'setother' means set flags for NON-
matching data.

‘clearcomplement' or 'clearother' means clear flags for NON-
matching (valid) data.

.expr

string

Expression of preflagger keyword sets (see above). Operators
AND, OR, and NOT are possible (or their equivalents &&,&, | |,
|, and !). Parentheses can be used to change precedence
order. For example: c1 and (c2 or c3)

Take care that the name of the set is used as an extra prefix
in the PreFlagger parameter names.

.timeofday

time vector

Ranges of UTC time-of-day given as st..end or val+-delta.
Each value must be given as 12:34:56.789, 12h34m56.789, or
as a value followed by a unit like h, min, or s.

.abstime

date/time
vector

Ranges of absolute UTC date/time given as st..end or val+-
delta. Each value (except delta) must be given as a date/time
in casacore MVTime format, for instance 12-
Mar-2010/11:31:00.000. A delta value must be given as a time
(for instance 1:30:0 or 20s).

reltime

time vector

Ranges of times (using .. or +-) since the start of the
observation. A time can be given like 1:30:0 or 20s.

.fimeslot

integer
vector

Time slot sequence numbers. First time slot is 0. st..end
means end inclusive.

st

time vector

Ranges of Local Apparent Sidereal Times like 1:30:0 +-
20min. The LST of a time slot is calculated for the array
position, thus not per antenna.

.azimuth

direction
vector

—

]

Ranges of azimuth angles given as st..end or val+-delta. Each
value has to be given as a casacore direction like
12:34:56.789 or 12h34m56.789, 12.34.56.789 or
12d34m56.789, or a value followed by a unit like rad or deg.

.elevation

direction
vector

Ranges of elevation angles (similar to azimuth). For example:
0deg. .10deg

.baseline

baseline
vector

un

See Description of baseline selection parameters.

.corrtype

string

un

Correlation type to match? Must be auto, cross, or an empty
string.

.bImin

double

1
=

If bImin > 0, baselines with length < blmin meter will match.

.blmax

double

1
()

If bimax > 0, baselines with length > bimax meter will match.

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

.uvmmin

double

If uvmmin > 0, baselines with UV-distance < uvmmin meter
will match. Note that the UV-distance is the projected baseline
length.

.uvmmax

double

If uvmmax > 0, baselines with UV-distance > uvmmax meter
will match.

fregrange

string
vector

(]

Channels in the given frequency ranges will match. Each
value in the vector is a range which can be given as start..end
or start+-delta. A value can be followed by a unit like KHz. If
only one value in a range has a unit, the unit is also applied to
the other value. If a range has no unit, it defaults to MHz. For
example: freqrange=[1.2 .. 1.4 MHz,
1.8MHz+-50KHz] flags channels between 1.2MHz and
1.4MHz and between 1.75MHz and 1.85MHz. The example
shows that blanks can be used at will.

.chan

string
vector

[]

The given channels will match (start counting at 0). Channels
exceeding the number of channels are ignored. Similar to
msin, it is possible to specify the channels as an expression of
nchan. Furthermore, .. can be used to specify ranges. For
example: chan=[0..nchan/32-1,
31*nchan/32..nchan-1] to flag the first and last 2 or 8
channels (depending on 64 or 256 channels in the
observation).

.amplmin

float vector

-1e30

Correlation data with amplitude < amplmin will match. It can
be given per correlation. For example,
amplmin=[100,,,100] matches data points with XX or YY
amplitude < 100. The non-specified amplitudes get the
default value.

It is also possible to give a single value (without brackets)
meaning that it is used as the minimum for all correlations.

.amplmax

float vector

1e30

Correlation data with amplitude > amplmax will match.

.phasemin

float vector

-1e30

Correlation data with phase < phasemin (in radians) will
match.

.phasemax

float vector

1e30

Correlation data with phase > phasemax (in radians) will
match.

.realmin

float vector

-1e30

Correlation data with real complex part < realmin will match.

.realmax

float vector

1e30

Correlation data with real complex part > realmax will match.

.imagmin

float vector

-1e30

Correlation data with imaginary complex part < imagmin will
match.

.imagmax

float vector

1e30

Correlation data with imaginary complex part > imagmax will
match.

ApplyCal

<step>.type

string

Case-insensitive step type; must be 'applycal' (or
‘correct’).

<step>.parmdb

string

Path of parmdb in which the parameters are
stored. This can also be an H5Parm file, in that
case the filename has to end in '.h5'

https://www.astron.nl/lofarwiki/

Printed on 2025-10-26 18:47

2025-10-26 18:47

25/35 DPPP

<step>.solset

string |*”

In case of applying an H5Parm file: the name of
the solset to be used. If empty, defaults to the
name of one solset present in the H5Parm (if
more solsets are present in an H5Parm and solset
is left empty, an error will be thrown))

<step>.correction

string |gain

Type of correction to perform, can be one of
'gain’, 'tec', 'clock’, '(common)rotationangle’' /
'rotation’, '(common)scalarphase’,
'(common)scalaramplitude' or 'rotationmeasure'
(create multiple ApplyCal steps for multiple
corrections). When using H5Parm, this is for now
the name of the soltab; the type will be deduced
from the metadata in that soltab, except for full
Jones, in which case correction should be
'fulljones'.

<step>.soltab

string |from
vector |correction

The name or names of the H5 soltab. Currently
only used when correction=fulljones, in which
case soltab should list two names (amplitude and
phase soltab).

If using H5Parm, the direction of the solution to

<step>.direction string |*”

use

Update the weights column, in a way consistent
<step>.updateweights bool false with the weights being inverse proportional to

the autocorrelations (e.g. if 'autoweights' was
used before).

<step>.interpolation

string |nearest

If using H5Parm, the type of interpolation (in time
and frequency) to use, can be one of 'nearest’ or
‘linear".

<step>.invert

bool |true

Invert the corrections, to correct the data.
Default is true. If you want to corrupt the data,
set it to 'false’

<step>.timeslotsperparmupdate

int 100

Number of time slots to handle after one read of
the parameter file. Optimization to prevent
spurious reading from the parmdb.

<step>.steps

list (1

(new in version 3.1) ApplyCal substeps, e.g.
[myApplyCall, myApplyCal2]. Their parameters
can be specified through e.g.
<step>.myApplyCall.correction=tec. If a
parameter is not given for the substep, it takes
the value from <step>..

GainCal

<step>.type

string

Case-insensitive step type; must be 'gaincal’ or
‘calibrate’.

<step>.caltype

string

The type of calibration that needs to be performed,
can be one of 'fulljones', 'diagonal’, 'phaseonly’,
'scalarphase’. Experimental values are 'amplitude' or
'scalaramplitude’, 'tec', 'tecandphase'

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

Path of parmdb in which the computed parameters
are to be stored. If the parmdb already exists, it will
be overwritten. Note: You cannot use this parmdb in
an applycal step in the same run of DPPP. To apply
the solutions of the gaincal directly, use
‘gaincal.applysolution' (see below). New in LOFAR
3.1: if the parmdb name ends in .h5, an H5Parm
will be written.

Vector of baseline lengths to use for calibration. See
<step>.blrange vector Description of baseline selection parameters. New in
version 2.20

Ignore baselines / channels with UV < uvlambdamin
wavelengths. Note: also all other variants of uv
<step>.uvlambdamin double|0 flagging described in UVWFlagger (uvmmin,
uvmrange, uvlambdarange, etc) are supported (New
in 3.1)

Baseline selection filter for calibration. See
<step>.baseline string Description of baseline selection parameters. New in
version 2.20

Apply the calibration solution to the visibilities. Note
that you should always also inspect the parmdb
afterwards to check that the solutions look
reasonable.

Number of time slots on which a solution is assumed
to be constant (same as CellSize.Time in BBS). 0
means all time slots. Note that for larger settings of
solint, and specially for solint = 0, the memory
usage of gaincal will be large (all visibilities for a
solint should fit in memory).

Number of channels on which a solution is assumed
to be constant (same as CellSize.Freq in BBS). 0
<step>.nchan int 0 means all channels. When caltype = 'tec' or
'tecandphase’, the default is 1, meaning that a TEC
will be fitted through a phase for each channel.

<step>.parmdb string

<step>.applysolution bool |false

<step>.solint int 1

Use model column. The model column name can be
<step>.usemodelcolumn bool |false |specified with msin.modelcolumn (default
MODEL DATA)

Apply the beam model (at the phase center) to the
visibilities in the model column. If this option is true,
<step>.applybeamtomodelcolumn|bool |false |all options from applybeam are valid as well (except
.invert, since the model data will always be
corrupted for the beam)

Use solutions of one time interval as a starting value

<step>.propagatesolutions bool |true for the next time interval
<step>.maxiter int 50 |Maximum number of iterations of stefcal
Detect if the iteration does not converge anymore
<step>.detectstalling bool |true |and then stop iterating even if maxiter is not
reached
<step>.tolerance float |1.e-5|Tolerance to which the model should match the data

https://www.astron.nl/lofarwiki/ Printed on 2025-10-26 18:47

2025-10-26 18:47 27/35 DPPP
If an antenna has less than minblperant unflagged
<step>.minblperant int 4 data points for a given solution slot, it is not used for
calibration
<step>.timeslotsperparmupdate |int 500 !\Iumber of solution intervals after which the parmdb
is updated
Debugging. If debuglevel==1, then a file debug.h5 is
. created containing all iterands. This file will be very
<step>.debuglevel int 0) \
large; you can use it to check the convergence
speed etc.
<step>.sourcedb Same as in Predict step
<step>.sources Same as in Predict step
<step>.usebeammodel Same as in Predict step
<step>.applycal.* ApplyCal sub-step, same as in Predict step
<step>.onebeamperpatch Same as in ApplyBeam step
<step>.usechannelfreq Same as in ApplyBeam step
<step>.beammode Same as in ApplyBeam step
DDECal
<step>.type string Case-insensitive step type; must be ‘ddecal’.
. Sourcedb (created with “makesourcedb’) with the
<step>.sourcedb string ,
sky model to calibrate on.
List of directions to calibrate on. Every element of
<step>.directions list [] this list should b a list of facets. Default: every facet
is a direction.
Use model data from the measurement set. This
implies solving for one direction, namely the
<step>.usemodelcolumn bool |false pointing of the measurement set. If you specify
usemodelcolumn to be true, directions and sourcedb
are not required
<step>.maxiter int 50 Maximum number of iterations.
<step>.detectstalling bool ltrue Stop iterating when' no |mprovem§3nt is measured
anymore (after a minimum of 30 iterations).
<step>.stepsize double|0.2 stepsize between iterations.
Filename of output H5Parm (to be read by e.g.
<step>.h5parm string losoto). If empty, defaults to instrument.h5
within the measurement set.
<step>.solint int 1 Solution interval in timesteps.
use the beam model. All beam-related options of the
<step>.usebeammodel bool |false : .
Predict step are also valid.
Type of constraint to apply. Options are
scalarcomplexgain, scalarphase, scalaramplitude,
<step>.mode string |diagonal tec, tecandphase. Modes in development are
fulljones, diagonal, phaseonly, amplitudeonly,
rotation, rotation+diagonal.
Controls the accuracy to be reached: when the
normalized solutions move less than this value, the
<step>.tolerance double|le-5 solutions are considered to be converged and the
algorithm finishes. Lower values will cause more
iterations to be performed.
Minimum number of visibilities within a solution
<step>.minvisratio double|0 interval, e.g. 0.6 for at least 60% unflagged vis.

Intervals with fewer vis will be flagged.

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

<step>.propagatesolutions

bool

false

Initialize solver with the solutions of the previous
time slot.

<step>.propagateconvergedonly

bool

false

Propagate solutions of the previous time slot only if
the solve converged. Only effective when
propagatesolutions=true.

<step>.flagunconverged

bool

false

Flag unconverged solutions (i.e., those from solves
that did not converge within maxiter iterations).

<step>.flagdivergedonly

bool

false

Flag only the unconverged solutions for which
divergence was detected. At the moment, this
option is effective only for rotation+diagonal solves,
where divergence is detected when the amplitudes
of any station are found to be more than a factor of
5 from the mean amplitude over all stations. If
divergence for any one station is detected, all
stations are flagged for that solution interval. Only
effective when flagunconverged=true and
mode=rotation+diagonal.

<step>.approximatetec

bool

false

Uses an approximation stage in which the phases
are constrained with the piece-wise fitter, to solve
local minima problems. Only effective when
mode=tec or mode=tecandphase.

<step>.maxapproxiter

int

maxiter/2

Maximum number of iterations during
approximating stage.

<step>.approxchunksize

int

Size of fitted chunksize during approximation stage
in nr of channels. With approxchunksize=1 the
constraint is disabled during the approx stage (so
channels are solved for independently). Once
converged, the solutions are constrained and more
iterations are performed until that has converged
too. The default is approxchunksize=0, which
calculates the chunksize from the bandwidth
(resulting in 10 chunks per octave of bandwidth).

<step>.approxtolerance

double

tolerance*10

Tolerance at which the approximating first stage is
considered to be converged and the second full-
constraining stage is started. The second stage
convergences when the tolerance set by the
'tolerance' keyword is reached. Setting
approxtolerance to lower values will cause more
approximating iterations. Since tolerance is by
default 1e-5, approxtolerance is by default 1e-4.

<step>.nchan

int

Number of channels in each channel block, for which
the solution is assumed to be constant. The default
is 1, meaning one solution per channel (or in the
case of constraints, fitting the constraint over all
channels individually). 0 means one solution for the
whole channel range. If the total number of
channels is not divisable by nchan, some
channelblocks will become slightly larger.

<step>.coreconstraint

double

Distance in meters. When unequal to 0, all stations
within the given distance from the reference station
(0) will be constraint to have the same solution.

https://www.astron.nl/lofarwiki/

Printed on 2025-10-26 18:47

2025-10-26 18:47

29/35 DPPP

<step>.antennaconstraint

list

(]

A list of lists specifying groups of antennas that are
to be constrained to have the same solution.
Example: “[
[CS002HBAO,CS002HBA1],[CS003HBAO,CS003HBA1]
1” will keep the solutions of CS002HBAO and 1 the
same, and the same for CS003.

<step>.smoothnessconstraint

double

Kernel size in Hz. When unequal to 0, will constrain
the solutions to be smooth over frequency by
convolving the solutions with a kernel of the given
size (bandwidth). The default kernel is a Gaussian
kernel, and the kernel size parameter is the 3 sigma
point where the kernel is cut off.

<step>.statfilename

string

File to write the step-sizes to. Form of the file is:
“<iterationnr> <normalized-stepsize>
<unnormalized-stepsize>", and all solution intervals
are concatenated. File is not written when this
parameter is empty.

<step>.uvlambdamin

double

Ignore baselines / channels with UV < uvlambdamin
wavelengths. Note: also all other variants of uv
flagging described in UVWFlagger (uvmmin,
uvmrange, uvlambdarange, etc) are supported (New
in 3.1).

<step>.subtract

bool

false

Subtracts the corrected model from the data. NOTE
This may not work when you apply a uv-cut.

<step>.useidg

bool

false

Do image-based prediction using IDG.

<step>.idg.images

list

(]

Filename of . fits model images, one per
frequency term. The terms are defined as for a
polynomial source spectra (not logarithmic), e.g. see
this WSClean page. The frequency in the metadata
of the fits files is used as nu, in the polynomial
evaluation.

<step>.idg.regions

string

uu

DS9 regions file describing the facets for IDG
prediction.

<step>.idg.buffersize

int

Based on Set the amount of timesteps that are to be used for
memory each IDG buffer

<step>.savefacets

bool

false

Write out each facet as a fits file (named
facet<N>.fits). Only useful when useidg=true.

<step>.onlypredict

bool

false

Instead of solving, output the predicted visibilities
instead. This is useful for testing, although when
doing faceted prediction with IDG, it might be fast
for certain cases.

<step>.applycal.*

ApplyCal sub-step, same as in Predict step. One can
pass an h5parm with as many directions as set in
“directions” and each direction model is corrupted
accordingly.

Predict

<step>.type

string

Case-insensitive step type; must be 'predict’

<step>.sourcedb

string

Path of sourcedb in which a sky model is stored (the
output of makesourcedb)

<step>.sources

string

vector

Patches to use in the predict step of the calibration

LOFAR Wiki - https://www.astron.nl/lofarwiki/

https://sourceforge.net/p/wsclean/wiki/ComponentList/

Last
update:

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

2021-02-26
14:18
<step>.usebeammodel |bool false |Use the LOFAR beam in the predict part of the calibration
Should the predicted visibilities replace those being
<step>.operation strin replace processed (replace, default), should they be subtracted
p=>-0p g P from those being processed (subtract) or added to
them (add)
Set of options for applycal to apply to this predict. For
<step>.applycal .* this applycal-substep, .invert is off by default, so the
predicted visibilities will be corrupted with the parmdb
<step>.onebeamperpatch Same as in ApplyBeam step
<step>.usechannelfreq Same as in ApplyBeam step
<step>.beammode Same as in ApplyBeam step
H5ParmPredict
. Case-insensitive step type; must be
<step>.type string ‘h5parmpredict’
. Path of sourcedb in which a sky model is stored
<step>.sourcedb string (the output of makesourcedb)
<step>.applycal.parmdb |string Path of the h5parm in which the corruptions are
stored
<step> applvcal.correction|strin SolTab which contains the directions to be
P=>-applycal. g predicted, or “fulljones”.
List of directions to include. Each of those directions
needs to be in the h5parm soltab. If empty, all directions
in the soltab are predicted. The names of the directions
strin need to look like [dirl,dir2], where dirl and dir2
<step>.directions vectgr [1 are patches in the sourcedb. By default, the full list of
directions is taken from the H5Parm. The convention for
naming directions in DDECal in H5Parm is
[patchl, patch2]. This directions parameter can be
used to predict / subtract a subset of the directions.
<step>.usebeammodel bool false Use_ the_ LOFAR beam in the predict part of the
calibration
Should the predicted visibilities replace those
<step>.operation string |replace being processed (replace, default), should they

be subtracted from those being processed
(subtract) or added to them (add)

<step>.applycal *

Set of options for applycal to apply to this
predict. For this applycal-substep, .invert is off
by default, so the predicted visibilities will be
corrupted with the parmdb

<step>.onebeamperpatch

Same as in ApplyBeam step

<step>.usechannelfreq

Same as in ApplyBeam step

<step>.beammode

Same as in ApplyBeam step

ApplyBeam

<step>.type

|string |

Case-insensitive step type; must be 'applybeam’

https://www.astron.nl/lofarwiki/

Printed on 2025-10-26 18:47

2025-10-26 18:47

31/35 DPPP

<step>.direction

string
vector

A RA/Dec value specifying in what direction to correct
the beam. See phaseshift.phasecenter for syntax. If
empty, the beam is corrected in the direction of the
current phase center.

<step>.onebeamperpatch

bool

false

Compute the beam only for the center of each patch
(saves computation time, but you should set this to false
for large patches). In the ApplyBeam step, this setting
does not make sense (but it does if the applybeam is
part of predict, ddecal, gaincal, h5parmpredict, etc.).
Generally, FALSE is the right setting for this option. The
default has changed to false in a recent (Nov 2018)
version.

<step>.usechannelfreq

bool

true

Compute the beam for each channel of the
measurement set separately. This is useful for merged /
concatenated measurement sets. For raw LOFAR data
you should set it to false, so that the beam will be
formed as in the station hardware. Also, setting it to
false is faster.

<step>.updateweights

bool

false

Update the weights column, in a way consistent with the
weights being inverse proportional to the
autocorrelations (e.g. if 'autoweights' was used before).

<step>.invert

bool

true

Invert the beam. When applying the beam to transfer
calibration solutions, this should be true. In other words:
invert=true means correcting for the beam,
invert=false means corrupting with the beam. When
using the beam in a predict (or gaincal) step, this option
defaults to false (so it will corrupt for the beam).

<step>.beammode

string

“default”

n u

Beam mode to apply, can be “array_factor”, “element”
or “default”. Default is to apply both the element beam
and the array factor.

SetBeam

SetBeam is an expert option and should only be used in rare cases. It allows direct manipulation of
the beam-keywords for a column in a measurement set. Normally, DP3 registers whether the
visibilities in a column are corrected for a beam or not, and if so, in what direction the beam was
corrected for. This avoids incorrect corrections / scaling by the beam. However, certain actions can
change the scaling of the visibilities without that the beam keywords are changed, in particular when
predicting (either with DP3 or with another tool). When predicting a single source and not applying
the beam, the visibilities are ‘corrected' for the beam in the direction of the source. Under those
circumstances, SetBeam can be used to modify the beam keywords. In that case, set direction to
the source direction and beammode to default.

<step>.type string Case-insensitive step type; must be 'setbeam'
<step>.direction string 1 A RA/Dec value specifying in what direction the beam is
vector corrected.

<step>.beammode

string

“default”

n o u

Beam mode to apply, can be “array_factor”, “element” or
“default”. Default means that sources in the given direction
have corrected (intrinsic) flux values, i.e. they are corrected
for the full beam.

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

UVWFlagger

Case-insensitive step type; must be 'uvwflagger' or

<step>.type string ‘uvwhlag',
If true, the flag percentages per frequency are saved to a
table with extension . flagfreq and percentages per
<step>.count.save bool false |station to a table with extension . flagstat. The
basename of the table is the MS name (without extension)
followed by the stepname and extension.
<step>.count.path string .« |The directory where to Freate thg flag percentages table. If
empty, the path of the input MS is used.
Flag baselines with UV within one the given ranges (in
<step>.uvmrange string i meters). Delimiters .. and +- can be used to specify a
vector range. E.g., uvmrange = [20..30, 40+-5] flags
baselines with UV in range 20-30 meter and 35-45 meter.
<step>.uvmmin double 0 Flag baselines with UV < uvmmin meter.
<step>.uvmmax double lel5|Flag baselines with UV > uvmmax meter.
<step>.umrange string 1 Flag baselines with U within one of the given ranges (in
vector meters).
<step>.ummin double 0 Flag baselines with U < ummin meter.
<step>.ummax double lel5|Flag baselines with U > ummax meter.
string Flag baselines with V within one of the given ranges (in
<step>.vmrange [1
vector meters).
<step>.vmmin double 0 Flag baselines with V < vmmin meter.
<step>.vmmax double lel5|Flag baselines with V > vmmax meter.
string Flag baselines with W within one of the given ranges (in
<step>.wmrange (]
vector meters).
<step>.wmmin double 0 Flag baselines with W < wmmin meter.
<step>.wmmax double lel5|Flag baselines with W > wmmax meter.
Flag baselines/channels with UV within one the given
string ranges (in wavelengths). Delimiters .. and +- can be used to
<step>.uvlambdarange vector [] specify a range. E.g.., uvlambda range = [20..30,
40+-5] flags baselines/channels with UV in range 20-30
wavelengths and 35-45 wavelengths.
<step>.uvlambdamin |double 0 Flag baselines/channels with UV < uvlambdamin
wavelengths
<step>.uvlambdamax |double 1e15 Flag baselines/channels with UV > uvlambdamax
wavelengths
<step>.ulambdarange string 1 Elag baselines/channels with U within one the given ranges
vector (in wavelengths).
<step>.ulambdamin |double 0 Flag baselines/channels with U < ulambdamin wavelengths
<step>.ulambdamax |double lel5|Flag baselines/channels with U > ulambdamax wavelengths
<step>.vlambdarange string 1 Elag baselines/channels with V within one the given ranges
vector (in wavelengths).
<step>.vlambdamin |double 0 Flag baselines/channels with V < vlambdamin wavelengths
<step>.vlambdamax |double lel5|Flag baselines/channels with V > vlambdamax wavelengths
<step>.wlambdarange string i Elag baselines/channels with W within one the given ranges
vector (in wavelengths).
<step>.wlambdamin |double 0 Flag baselines/channels with W < wlambdamin wavelengths

https://www.astron.nl/lofarwiki/

Printed on 2025-10-26 18:47

2025-10-26 18:47

33/35 DPPP

<step>.wlambdamax |double le15 Flag baselines/channels with W > wlambdamax
wavelengths
If given, use this phase center to calculate the UVW
coordinates to flag on. The vector can consist of 1, 2 or, 3
values. If one value is given, it must be the name of a
moving source (e.g. SUN or JUPITER). Otherwise the first
string two values must contain a source position that can be given
<step>.phasecenter [] . . .
vector in sexagesimal format or as a value followed by a unit. The
third value can contain the direction type; it defaults to
J2000. Possible types are GALACTIC, ECLIPTIC, SUPERGAL,
J2000, B1950 (as defined in the casacore Measures
system).
Split
<step>.type string Case-insensitive step type; must be 'split' or '‘explode’
<step>.steps string 1 List of next steps; each step will run after this step. E.qg.
vector [average, msout]
strin The substep keys that should be different for each of the next
<step>.replaceparms vectgr [1/steps. Instead of their default type, they should now be a list of

those things. E.g. [average.timestep, msout.name]

Interpolate

The interpolate step replaces flagged values by interpolating them using “neighbouring” samples
(samples close in time and frequency). It calculates the Gaussian weighted sum over non-flagged
samples, with a sigma parameter of one timestep/one channel. The flags are removed after
interpolation. This is in particular useful in combination with averaging; by replacing flagged values
before averaging, the output visibilities will more accurately represent the true sky. This step was
aimed to solve frequency structure from flagging/averaging for the EoR experiment, but might be
useful in other cases as a more accurate averaging step. Details are published in Offringa, Mertens

and Koopmans (2018).

<step>.type string

Case-insensitive step type; must be 'interpolate’.

<step>.windowsize|int |15|Size of the window over which a value is interpolated. Should be odd.

Description of baseline selection parameters

Parameters to select on baseline can be used in the steps preflagger and filter. The step msin only
supports .baseline. The parameters are described in the table below.

Parameter type

default

description

.corrtype |string

nn

Correlation type to match? Must be auto, cross, or an empty string (=

all).

double

.blrange
9 vector

Zero or more ranges of physical baseline lengths (in m). A baseline
matches if its length is within one of the ranges. E.qg.,
blrange=[0,10000, 100000, 1le30]

LOFAR Wiki - https://www.astron.nl/lofarwiki/

https://arxiv.org/abs/1901.04752
https://arxiv.org/abs/1901.04752

Last
update:
2021-02-26
14:18

public:user_software:documentation:ndppp https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

Parameter type

default

description

baseline

.baseline
vector

un

Names of baselines to be matched. It can be given as either a vector
of vectors or as a casacore MSSelection string. These two methods
are mutually exclusive. When in doubt, use the second syntax.

1. If given as a vector, a vector element can be a vector of two names
giving the stations forming a baseline. For example: baseline=[
[CSO01,RS003], [CS002,RSO05]] selects baselines CS001-
RS003 and CS002-RS005.

Each name can be a shell-type pattern (with wildcards * ? [] or {}).
Thus baseline=[[CS*,RS*]] selects all baselines between core
and remote stations. Note that the wildcard characters {} mean OR.
They can be used to pair groups of stations (quotes are needed). For
example: baseline=[[“{CS001,CS002}",“{RS003,RS005}"]

] selects baselines CS001-RS003, CS001-RS005, CS002-RS003, and
CS002-RS005.

Besides giving a baseline, it is also possible to give a single station
name (possibly wildcarded) meaning that all baselines containing
that station will be selected. For example: baseline=[RS*, CS*]
selects all baselines containing remote or core stations. Please note
that an extra bracket pair is needed to specify baselines between RS
and CS like in baseline=[[RS*,CS*]] Itis a bit hard to select
international stations using this syntax.

2. The casacore MSSelection baseline syntax is described in this note
and Casacore note 263. The advantage of this syntax is that it is
more concise and that besides a station name pattern, it is possible
to give a station number. The examples above can be expressed as:
baseline=CSO01&RS003; CSO02&RSO05 for baseline CS001-RS003
and CS002-RS005

baseline=CS001,CS002&RS003,RSO05 for CSO001-RS003, CSO01-
RS005, CS002-RS003, and CS002-RS005

baseline=RS*&&CS* for baselines (also auto-corr) between RS and
CS stations.

baseline=8&12 baseline between station number 8 and 12.

Note that & means cross-correlations, && means cross and auto, &&&
means auto only.

International stations can be selected most easily using negation. E.g.
use baseline="[CR]S*&&* to select all baselines containing an
international station.

use baseline="[CR]S*&& to select baselines containing ONLY
international stations.

Sometimes the baselines between the HBA ears of the same station
should be deselected, which can be done using the following string
~/(.*)HBAO&\1HBAl/

Without the up-arrow it will select such baselines.

Note: in the msin step only the second way is possible.

Also note that, currently, only the first way works properly when
selecting baselines after a station has been added. The reason is that
the second way looks in the original ANTENNA table to find matching
station names, thus will not find the new station.

https://www.astron.nl/lofarwiki/

Printed on 2025-10-26 18:47

https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=public:user_software:documentation:msselection.pdf
https://www.astron.nl/lofarwiki/lib/exe/fetch.php?tok=b5be53&media=http%3A%2F%2Fcasacore.github.io%2Fcasacore-notes%2F263.html

2025-10-26 18:47 35/35 DPPP

From:
https://www.astron.nl/lofarwiki/ - LOFAR Wiki

Permanent link:
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

Last update: 2021-02-26 14:18

LOFAR Wiki - https://www.astron.nl/lofarwiki/

https://www.astron.nl/lofarwiki/
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:ndppp

	[DPPP]
	DPPP
	Important
	Old documentation
	MeasurementSet Access
	Flagging
	Averaging
	Demixing
	Smart Demixing
	Phase shifting
	Upsample
	Station summation
	Data scaling
	Filtering
	Flag statistics and plotting
	Intermediate output step
	User defined step
	Python defined step

	ParSet File
	Description of all parameters
	Counter
	Input
	Output
	Filter
	Upsample
	AOFlagger
	MADFlagger
	PhaseShift
	Demixer
	SmartDemixer
	Averager
	StationAdder
	ScaleData
	PreFlagger
	ApplyCal
	GainCal
	DDECal
	Predict
	H5ParmPredict
	ApplyBeam
	SetBeam
	UVWFlagger
	Split
	Interpolate
	Description of baseline selection parameters

