
2025-10-24 21:53 1/11 The LOFAR Subversion Repository

LOFAR Wiki - https://www.astron.nl/lofarwiki/

The LOFAR Subversion Repository

The LOFAR repository can be found at https://svn.astron.nl/LOFAR. You will need a valid username and
password in order to gain access. Both read-only and full access can be provided. You can also browse
the repository. If you are a software developer and need access to the LOFAR repository, please
contact Marcel Loose.

You may wish to consult the online book Version Control with Subversion for more information about
Subversion.

 Before reading further, please read the page Development Management Policy and
the document Release Management Procedure.

Structure of the repository

The LOFAR software repository is set up like most other Subversion repositories.

branches/
tags/
trunk/

These names more or less speak for themselves. Main development is done on the trunk. The tags
directory contains tagged release or development versions; the branches directory contains release
or development branches. See section Development Management Policy on this page for details.

Accessing the repository

There are several ways to access the repository. You can browse the repository with your web
browser, or use ViewVC, which provides a very nice interface to the repository.

You can also access the repository with a Subversion client. Usually, you will use this method when
you want to checkout code. The simplest client is a command line client, which is available on most
modern Linux/Unix systems. Windows users may wish to use TortoiseSVN.

Common actions

This section will provide a very brief overview of the most common actions that you will generally
take.

Checking out code

https://svn.astron.nl/LOFAR
https://svn.astron.nl/viewvc/LOFAR
https://svn.astron.nl/viewvc/LOFAR
mailto:loose@astron.nl
http://svnbook.red-bean.com/
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:developmentmanagementpolicy
http://www.lofar.org/project/lofardoc/document.php?action=dir&docname=LOFAR-ASTRON-PRC-010&major=3
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software#development_management_policy
https://svn.astron.nl/LOFAR
https://svn.astron.nl/viewvc/LOFAR
http://tortoisesvn.tigris.org/

Last
update:
2016-12-15
09:17

public:user_software:documentation:lofarsvn https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn&rev=1481793476

https://www.astron.nl/lofarwiki/ Printed on 2025-10-24 21:53

The general syntax for the checkout command is

svn checkout URL... [PATH]

If PATH is omitted, the basename of the URL will be used as the destination.

To checkout a working copy of the complete trunk (i.e. main development line) of the LOFAR software
tree, you should issue the following command:

svn co https://svn.astron.nl/LOFAR/trunk LOFAR

 Do not forget to add /trunk to the URL. Otherwise you will checkout every tag and branch of
the LOFAR repository as well, leaving you with hundreds of copies of the complete LOFAR software
tree.

However, you may wish to checkout the root directory only, and let CMake do the rest. This can be
done by adding the -N flag like:

svn co -N https://svn.astron.nl/LOFAR/trunk LOFAR

 Subversion has a somewhat weird behaviour with respect to a non-recursive checkout (svn co
-N): non-recursiveness is sticky. In fact, the whole concept of recursive and non-recursive checkout is
broken in Subversion (see Issue 695 in Subversion's issue tracker). This has some surprising side
effects. Notably, if you first do a non-recursive checkout of a top-level directory (e.g. svn co -N
https://svn.astron.nl/LOFAR/trunk LOFAR) and subsequently run an svn update (without
the -N option) in your workspace, Subversion will tell you that your working copy is up-to-date. You'd
think that subsequently issuing a svn co without the -N option would solve your problems, but it
does not. Subversion will refuse to do this, because it considers a recursive checkout a different URL.

Note: When you want to do a build of one or more LOFAR packages, you can use CMake to do this for
you. Please refer to the CMake for LOFAR for details.

Staying up-to-date

Since you're probably not the only one developing code for LOFAR, you will need to update your
workspace from time to time. Do not wait too long, or you might have to go through the hassle of
resolving conflicts.

The general syntax is

svn update [PATH...]

This will merge the changes made to the repository since your last checkout with your local changes.
You may wish to update to a specific revision. In that case, you should add the -r [–revision]
arg to the svn update command.

http://subversion.tigris.org/issues/show_bug.cgi?id=695
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofar-cmake

2025-10-24 21:53 3/11 The LOFAR Subversion Repository

LOFAR Wiki - https://www.astron.nl/lofarwiki/

For each updated file you will see what action was taken:

A Added
D Deleted
U Updated
C Conflict
G Merged

If any conflicts arise, you will need to resolve them. See Handling merge conflicts.

Adding files and directories

You can add files and directories with the svn add command. The general syntax is:

svn add PATH...

 When you add a directory, Subversion recursively adds all the files within the directory and its
subdirectories, unless you specify the -N [–non-recursive] option. This behaviour is different
from CVS.

Copying and moving files and directories

Copying is the fundamental operation in Subversion upon which everything else is based. Successive
revisions of a file are copies of a file with the content changed.

Unlike CVS, Subversion remembers history when copying files and directories.

The general syntax for the copy command is:

svn copy SRC DST

SRC and DST can each be either a working copy (WC) path or URL:

 WC -> WC: copy and schedule for addition (with history)
 WC -> URL: immediately commit a copy of WC to URL
 URL -> WC: check out URL into WC, schedule for addition
 URL -> URL: complete server-side copy; used to branch & tag

Moving a file is equally simple:

svn move SRC DST

Note: this subcommand is equivalent to a 'copy' and 'delete'.

SRC and DST can both be working copy (WC) paths or URLs:

 WC -> WC: move and schedule for addition (with history)

Last
update:
2016-12-15
09:17

public:user_software:documentation:lofarsvn https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn&rev=1481793476

https://www.astron.nl/lofarwiki/ Printed on 2025-10-24 21:53

 URL -> URL: complete server-side rename.

Committing changes

In order to commit a change into the LOFAR software repository, you need a valid Redmine task-id.
The commit message must start with either Task #<id> or Fixes #<id>, followed by a
meaningful log message. The latter form will automatically change the state of the task to FIXED.

For the regex savvy

The format of the commit message is verified using the following regex pattern

^(fixes|task)\s*#(\d+)/i

Examples

Valid commit commands

svn commit -m "Task #1033: Fixed an integer overflow bug in
add_and_subtract()"
svn ci -m "Fixes #675 Final fix for the open socket linger period"

Invalid commit commands

svn commit -m "Task :1033: Fixed an integer overflow bug in
add_and_subtract()"
svn ci -m "Final fix for the open socket linger period"

Note: If you omit the -m options, Subversion will bring up an editor so you can type a longer
message.

 After a commit, only the files that were actually changed will have been updated. This means
that part of your workspace will still be at the BASE revision, and part will be at the HEAD revision. You
should do an svn update at the top-level directory to bring the unmodified files up-to-date as well.

Branching and Merging

The concepts of branching, tagging and merging may seem intimidating and confusing at first, but do
not let you scare away. You should definitely read Chapter 4. Branching and Merging of the book
Version Control with Subversion

http://svnbook.red-bean.com/en/1.6/svn.branchmerge.html
http://svnbook.red-bean.com/

2025-10-24 21:53 5/11 The LOFAR Subversion Repository

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Branch and tag names must adhere to conventions described on the page Release Management
Procedure.

Creating a task or release branch

This is a simple method to create a branch and/or tag. Note, that the branch is created for the whole
LOFAR tree.

Suppose we want to create a new task branch, which is split off the trunk at svn version number
19123.

First create a software Task in Redmine (under LOFAR → Tasks → your category) that can be
attached to the creation of the release branch (Task 1493 in this example).
Based on that number, the task will be named (for example) LOFAR-PyBDSM-Task1493. To
create the branch directly in the repository give the command:

svn copy -r 19123 \
 https://svn.astron.nl/LOFAR/trunk \
 https://svn.astron.nl/LOFAR/branches/LOFAR-PyBDSM-Task1493 \
 -m "Task #1493: Creating task branch LOFAR-PyBDSM-Task1493"

Instead of using a particular trunk revision, you can create a task branch from the HEAD, which is the
latest version of the trunk, by omitting the -r <rev.nr.> in the svn copy command.

 If your current working directory is a working copy, you can use the new caret (^) notation as a
shorthand for the URL of the repository's root directory. The svn copy command then becomes:

svn copy -r 19123 \
 ^/trunk \
 ^/branches/LOFAR-PyBDSM-Task1493 \
 -m "Task #1493: Creating task branch LOFAR-PyBDSM-Task1493"

A release branch is created in the same way, but should be named like LOFAR-Release-
<major>_<minor>, e.g., LOFAR-Release-1_8. It also requires a task to be created (in subproject
LOFAR → Tasks → Rollout).

For the regex-savvy

The release branch name (i.e., the part following /branches/) should match with the following
regex:

^\w+(-\w+)*-Release-\d+_\d+$

Creating a (task) tag

This is optional, but some find this useful as a fallback in case of problems. To create a tag LOFAR-
Task1718-premerge in your task branch LOFAR-Task1718, use the command:

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:developmentmanagementpolicy
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:developmentmanagementpolicy
https://www.astron.nl/lofarwiki/lib/exe/detail.php?id=public%3Auser_software%3Adocumentation%3Alofarsvn&media=engineering:software:bulb_idea_small.png

Last
update:
2016-12-15
09:17

public:user_software:documentation:lofarsvn https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn&rev=1481793476

https://www.astron.nl/lofarwiki/ Printed on 2025-10-24 21:53

svn copy \
 https://svn.astron.nl/LOFAR/branches/LOFAR-Task1718 \
 https://svn.astron.nl/LOFAR/tags/LOFAR-Task1718-premerge \
 -m "Task #1718: Creating pre-merge tag in repository"

Optionally you can add the -r <revision> flag if you want the tag to be associated with an earlier
status of your code in the task branch. Again, if your current working directory is a working copy, you
can use the new caret (^) notation.

For the regex-savvy

The name of the tag should match with the following regex:

^(\w+-)+Task\d+-\w+

 A pre-commit hook will prevent you from accidentally committing to a tag. The only thing you
can do to a tag is delete it.

Preparing the reintegration of your TASK! branch with the parent branch

Eventually, you want to reintegrate your development efforts on the task branch with the parent
branch from which the task branch has been created (usually the trunk). This is done in three steps:

Commit all your edits to the task branch
Merge the current state of the parent branch into your task branch, and commit all changes
again.
Reintegrate the task branch into the parent branch

Commit all edits

Make sure you have committed all changes in your workspace into the SVN repository

Merge the parent branch into the task branch

You have to make sure that any changes made on the parent branch since you created your task
branch do not break your code. Therefore, merge the changes on the parent branch with your task
branch. See the section Keeping a Branch in Sync in the book Version Control with Subversion.

Before you proceed

http://svnbook.red-bean.com/en/1.6/svn-book.html#svn.branchemerge.basicmerging.stayinsync

2025-10-24 21:53 7/11 The LOFAR Subversion Repository

LOFAR Wiki - https://www.astron.nl/lofarwiki/

 Make sure that you have no local (uncommitted) changes in the working copy of your task
branch.

 Make sure that your working copy contains a complete LOFAR tree, which is usually not the
case when you've let CMake do the (partial) checkout as part of the build. If you don't have a
complete tree, you'll be in for a lot of tree conflicts when doing the merge. Issue the following
command to update your current working directory to a complete tree:

svn update --set-depth infinity

If you don't want to clobber your current working copy, you should do a separate checkout of your
development branch.

Let's merge

So, let's merge the changes from the trunk (in this example!) into your task branch. Make sure you're
at the top-level LOFAR directory in your checked out task branch before issuing the following
command:

svn merge ^/trunk

You may wish to use the --dry-run option first to see the result of the merge. This will not actually
change any files, but will tell you what you can expect and will detect conflicts.

If there are any merge conflicts, you need to resolve them. To do so, you will have to run the above
merge-command first on your workspace of the task branch.

Then resolve all of the conflicts (see Handling merge conflicts for guidelines).

Finally, check-in all changes into your task branch, e.g.:

svn ci -m "Task #1234: Committing changes related to merging the trunk into
my task branch"

Recompile and test your task branch again. When you're satisfied you are ready to merge the
changes made to the task branch back into the trunk. Before doing so, you may wish to tag the task
branch as done.

Reintegrate your changes with the parent branch

Before merging your changes back to the parent branch, make sure you've committed all your
changes (see above)! To reintegrate with the parent branch, you need to have a local working copy of
it. This can be done either by:

Switching your working copy to the parent branch, e.g.:

Last
update:
2016-12-15
09:17

public:user_software:documentation:lofarsvn https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn&rev=1481793476

https://www.astron.nl/lofarwiki/ Printed on 2025-10-24 21:53

svn switch ^/trunk

 Make sure you have a clean working copy after the switch, which contains the complete
code tree. Use the option --set-depth infinity if you had a sparse working copy before
the switch.

Checking out a working copy in a new directory

cd LOFAR_trunk
svn co https://svn.astron.nl/LOFAR/trunk LOFAR

Now you're ready to reintegrate your changes with the parent branch, e.g.:

svn merge --reintegrate ^/branches/LOFAR-Task1718-creation

Note the use of the --reintegrate option. This is required when merging back into the
parent branch. Please refer to the section Reintegrating a Branch in the book Version Control with
Subversion for more details.

If there are no conflicts, or all conflicts are resolved, do not forget to check in the results:

svn ci -m "Task #1234: Reintegrated task branch LOFAR-Task1718-creation
(short description of what you did) into the trunk"

 Once a --reintegrate merge is done, the task branch is no longer usable for further work. If
you want to continue to work on this branch, you should first delete it from the SVN repository (see
below), and then recreate it again from the parent branch.

Now that you've reintegrated your task branch with the parent branch, it's time to delete the
obsoleted task branch:

svn delete ^/branches/LOFAR-Task1718-creation

Merging changes in a RELEASE! branch with the trunk

After a change has been made to a release branch, the change must also be ported to the trunk so
the change is not lost when the next release branch is created. This must be done immediately after
the change to the release branch has been committed, for the following reasons:

You are still aware of the changes made so any conflicts can be solved more easily
The chances that your changes are the only ones made to the release branch are much larger

The best thing to do is to merge the whole release branch into the trunk. To do so:

Get a clean working copy of the trunk.1.

http://svnbook.red-bean.com/en/1.6/svn-book.html#svn.branchemerge.basicmerging.reintegrate

2025-10-24 21:53 9/11 The LOFAR Subversion Repository

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Merge the release branch into the trunk (do not reintegrate!)2.
Resolve conflicts and run the (unit) tests3.
Commit your changes4.

Get a clean working copy of the trunk

svn co https://svn.astron.nl/LOFAR/trunk <local dir>

Or switch an existing working copy (e.g., of your task branch) to the trunk

svn switch ^/trunk

In this case, make sure your working copy is clean, i.e., svn stat should not show any modified or
unversioned files.

Merge the release branch into the trunk

Go into <local dir> and execute:

svn merge ^/branches/<release branch name>

Do not reintegrate!

Resolve conflicts

Textual conflicts must be resolved. Tree conflicts are usually related to mergeinfo, which can be
accepted as theirs fully. See below for more info on resolving merge conflicts.

If you note that there are more changes in the release branch than your own, please find out who
committed those changes and resolve the conflicts together. If that is not possible, you can add a
revision range to the svn merge command which contains only your changes (though this is the
least preferred option as it forwards the problem to the person who makes the next change to the
release branch and needs to merge these into the trunk..!).

Commit your changes

After all conflicts are resolved and if all (unit) tests pass, changes must be committed to the trunk:

svn ci -m "Task #xxxx: Merged changes in release branch <release branch
name> to the trunk"

Handling merge conflicts

For guidelines on how to merge changes made in a branch to the trunk, see the previous section.

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofarsvn#handling_merge_conflicts
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofarsvn#merging_changes_in_a_release_branch_with_the_trunk

Last
update:
2016-12-15
09:17

public:user_software:documentation:lofarsvn https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn&rev=1481793476

https://www.astron.nl/lofarwiki/ Printed on 2025-10-24 21:53

A merge conflict can occur when two or more people make different changes to the same file. When
Subversion encounters a merge conflict (e.g. during an update), it will place specific markers in the
original source file.

The lines between the markers: <<<<<<< .mine and ======= contain our local changes;
The lines between ======= and >>>>>>> .r<nn> contain the changes in the repository since
our last checkout or update.

Furthermore, Subversion will make copies of the unmergeable files; for example:

MACScheduler.cc.merge-left.r16851 → Older revision
MACScheduler.cc.merge-right.r17270 → Newer revision
MACScheduler.cc.working → Copy of the version that was present in your directory

Resolving the conflict

To resolve this conflict you have three options: scrap your changes, keep your changes, or use parts
of both

Scrap your changes

If you decided to scrap your changes and use the version in the repository, then all you have to do is
revert your changes

 svn revert <file>

or alternatively

 cp <file>.r<nn> <file>

Keep your changes

If you wish to keep your changes and lose those in the repository, then you should copy the .mine
backup file that Subversion created to the original file

 cp <file>.mine <file>

Use parts of both versions

Finally, if you decide to use parts of both revisions, you'll have to do some manual editing. Fire up
your favorite editor and make your changes. Do not forget to remove the conflict markers!

2025-10-24 21:53 11/11 The LOFAR Subversion Repository

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Marking the conflict as resolved

Once you've resolved the conflict, you should inform Subversion, otherwise you will not be able to
commit the file.

 svn resolved <file>

More information

More information on handling (merge) conflicts can be found in the sections Resolve Any Conflicts and
More on Merge Conflicts of the book Version Control with Subversion. See also the following links for
solving very specific issues when merging:

http://stackoverflow.com/questions/2472249/missing-ranges-error-message-when-reintegrating-a-bra
nch-into-trunk-in-subversio

Removing a branch

Branches can be removed from the repository using the command:

 svn delete <URL of branch>

References

Release Management Procedure
LOFAR Subversion Frequently Asked Questions
Subversion for CVS users
How we migrated from CVS to Subversion
The Subversion homepage
The online book Version Control with Subversion
openCollabNet's Subversion Knowledge Base

From:
https://www.astron.nl/lofarwiki/ - LOFAR Wiki

Permanent link:
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn&rev=1481793476

Last update: 2016-12-15 09:17

http://svnbook.red-bean.com/en/1.6/svn-book.html#svn.tour.cycle.resolve
http://svnbook.red-bean.com/en/1.6/svn-book.html#svn.branchmerge.advanced.mergeconflicts
http://stackoverflow.com/questions/2472249/missing-ranges-error-message-when-reintegrating-a-branch-into-trunk-in-subversio
http://stackoverflow.com/questions/2472249/missing-ranges-error-message-when-reintegrating-a-branch-into-trunk-in-subversio
http://www.lofar.org/project/lofardoc/document.php?action=dir&docname=LOFAR-ASTRON-PRC-010&major=3
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofarsvnfaq
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofarsvn4cvs
https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofarcvs2svn
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://subversion.open.collab.net/svnkb/svnkb.html
https://www.astron.nl/lofarwiki/
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn&rev=1481793476

	The LOFAR Subversion Repository
	Structure of the repository
	Accessing the repository
	Common actions
	Checking out code
	Staying up-to-date
	Adding files and directories
	Copying and moving files and directories
	Committing changes
	For the regex savvy
	Examples
	Valid commit commands
	Invalid commit commands

	Branching and Merging
	Creating a task or release branch
	For the regex-savvy

	Creating a (task) tag
	For the regex-savvy

	Preparing the reintegration of your TASK! branch with the parent branch
	Commit all edits
	Merge the parent branch into the task branch
	Before you proceed
	Let's merge

	Reintegrate your changes with the parent branch

	Merging changes in a RELEASE! branch with the trunk
	Get a clean working copy of the trunk
	Merge the release branch into the trunk
	Resolve conflicts
	Commit your changes

	Handling merge conflicts
	Resolving the conflict
	Scrap your changes
	Keep your changes
	Use parts of both versions

	Marking the conflict as resolved
	More information

	Removing a branch

	References

