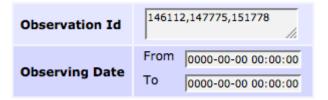
Advanced ways to find and retrieve data in the LTA

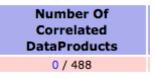
There are some useful ways to find and retrieve your data in the LTA that might not be immediately obvious. This page explains some of the more advanced options you have.

Queries


• You can use colons in numeric queries, to select ranges. This will for example give all observations and pipelines that have a SAS/Observation ID in the range from 432000 to 432190:

Observation Id	432000:432190		
Observing or Pipeline Run Date	From 0000-00-00 00:00:00 To 0000-00-00 00:00:00		
Project	any 🗘		
Maximum Number of Rows			

In textual entries, wildcards can be used.


Target Name	3:10*
rarget name	3013

• You can put a list of SAS/Observation IDs in the query:

Viewing data

When you are looking at the results of a query you might see something like this:

This means that the observation is known in the LTA, it knows what data was produced, the produced data was not archived, but further processing happened on the raw data and the results of some of those pipelines were archived. If you click on the zero, you will see something like this:

#		DataProduct Identifier	SubArray Pointing Identifier	Subband	Stations	Observations	Pipeline	Derived DataProducts
1		7260485	293855	479	show	1		AveragingPipeline
2		7260483	293855	477	show	1		AveragingPipeline
3		7260488	293855	482	show	1 back t	0	AveragingPipeline
4		7260489	293855	483	show	1 obser	vation	AveragingPipeline
5		7260492	293855	486	show	1		AveragingPipeline
6	Con	7260490	293855	484	show	1		AveragingPipeline
7		not be 7260493	293855	487	show	1		AveragingPipeline
8	aow	nloaded ₇₂₆₀₄₈₆	293855	480	show	1		AveragingPipeline
9		7260487	293855	481	show	1	To pipe	AveragingPipeline
10		7260482	293855	476	show	1	i o pipe	AveragingPipeline
11		7260491	293855	485	show	1		AveragingPipeline
12		7260484	293855	478	show	1		AveragingPipeline
13		7260436	293854	430	show	1		AveragingPipeline

This allows you to navigate from a pipeline back to the original observation, or from the observation to any pipelines that have run on the raw data.

Retrieving data

• You can retrieve data on the Observation and Pipeline level, you don't have to select all files individually.

#	Observation Id	Observing Mode	Antenna Set	Instrun Filte
1	146448	Interferometer	HBA Dual Inner	110-190
2	146447	Interferometer	HBA Dual Inner	110-190
3	146446	Interferometer	HBA Dual Inner	110-190
4	146445	Interferometer	HBA Dual Inner	110-190
5	146444	Interferometer	HBA Dual Inner	110-190
6	146443	Interferometer	HBA Dual Inner	110-190
7	146442	Interferometer	HBA Dual Inner	110-190
8	146441	Interferometer	HBA Dual Inner	110-190
9	146456	Interferometer	HBA Dual Inner	110-190
10	146455	Interferometer	HBA Dual Inner	110-190
11	146454	Interferometer	HBA Dual Inner	110-190
12	146453	Interferometer	HBA Dual Inner	110-190
13	146452	Interferometer	HBA Dual Inner	110-190

• If you have a query with more than 1000 results, you can open the multiple pages each in a separate tab/window.

Observation 1001 to 1100 (showing 100 of total 1156) +

edit columns | stage selected

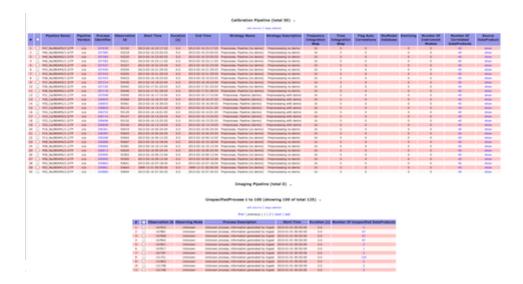
first | previous | ... | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | next | last

r Of SubArray Start Time Duration Nr Stations Nr Stations

• With the small triangle next to a list, you can fold or unfold the list to get a better overview.

Folded entries

Observation 1 to 100 (showing 100 of total 1156)



Calibration Pipeline (total 30)

Imaging Pipeline (total 0)

UnspecifiedProcess 1 to 100 (showing 100 of total 125)

Unfolded entries

DBView

There is a server that gives the option to run your own queries on the database https://lta-dbview.lofar.eu/

A useful query might be this one, that gives you all files for a certain Obs Id (SAS VIC tree ID).

```
SELECT fo.URI, dp."dataProductType", dp."dataProductIdentifier",
dp."processIdentifier"
FROM AWOPER."DataProduct+" dp,
    AWOPER.FileObject fo,
    AWOPER."Process+" pr
WHERE dp."processIdentifier" = pr."processIdentifier"
    AND pr."observationId" = '123456'
    AND fo.data_object = dp."object_id"
```

LOFAR Wiki - https://www.astron.nl/lofarwiki/

```
AND dp."isValid"> 0
```

In this '123456' should be replaced with the Obs Id of an Observation/Pipeline you're looking for. Pipelines also have an "observationId" == the SAS Id, even though that's a but confusing. To be able to run this query, you have to go to the link above, login as the right user, select the right project, and then put this query into the "Manual SQL".

Example You can also modify these queries. for example if you want to also know the MD5 checksum, you can run:

```
SELECT fo.URI, fo.hash_md5, dp."dataProductType",
dp."dataProductIdentifier",
dp."processIdentifier"
FROM AWOPER."DataProduct+" dp,
    AWOPER.FileObject fo,
    AWOPER."Process+" pr
WHERE dp."processIdentifier" = pr."processIdentifier"
AND pr."observationId" = '123456'
AND fo.data_object = dp."object_id"
AND dp."isValid"> 0
```

AstroWise Python Interface

There is a Python client library for accessing the LTA. With this library, you can script your own queries. The installation description can be found here: LTA Client installation. Be sure to have the latest version installed. Note that since January 2018 this library uses python3, python2 is no longer supported.

Once you have installed the client, set up your user name and password. These are the same as for MoM. Remember that this is just a different interface to the LTA catalogue: you will need the same credentials as for the web interface.

After installing the LTA client, the file .awe/Environment.cfg will appear in your home directory (if not, then create one). Make sure the file at least contains the following lines:

```
[global]
database_user : <your username>
database_password : <your password>
```

The following script can be used to test your installation:

```
# Python3 code
from pprint import pprint
from awlofar.main.aweimports import Observation, Pointing, SubArrayPointing
from common.database.Context import context
result = {}
for project in sorted(context.get_projects()) :
    print("Project %(project)s" % vars())
```

```
2025-09-08 10:05
```

```
ok = context.set project(project)
    # do your query
   obs ids = set()
    query = (Pointing.rightAscension > 95)
                                            ω \
            (Pointing.rightAscension < 105) & \
            (Pointing.declination > 20) & \
            (Pointing.declination
                                     < 30)
   print("Total Pointings %d" % len(query))
    for pointing in query :
        print("Pointing found RA %f DEC %f" % (pointing.rightAscension,
pointing.declination))
        query subarr = SubArrayPointing.pointing == pointing
        for subarr in query subarr:
            query_obs = Observation.subArrayPointings.contains(subarr)
            for obs in query obs :
                obs ids.add(obs.observationId)
    result[project] = sorted(list(obs ids))
    print(result[project])
```

pprint(result)

It should print out a list of pointings (note that in this example the library was installed in \$HOME/tmp):

```
$ env PYTHONPATH=$HOME/tmp/lib/python3.5/site-packages python3 lta_test.py
Project ALL
Total Pointings 202
Pointing found RA 95.003499 DEC 24.838742
Pointing found RA 95.174754 DEC 28.660087
Pointing found RA 95.220000 DEC 29.140000
Pointing found RA 95.546250 DEC 23.331750
Pointing found RA 95.561458 DEC 24.584056
..etc..
```

You may need to kill the script, because it will print out all the observations in a certain patch of the sky archived in the LTA.

In case of errors, there may be the need to open some port on the firewall at your institution. Specifically, port 1521 should be open. Also make sure that the LTA client library can be found in your PYTHONPATH (see LTA Client installation for more details). In case of trouble, get in contact with Science Operations and Support.

Examples

Once you have tested that your connection to the catalogue is working, you are ready to browse the archive and stage the data you need. Here we will list a few examples of python scripts that can be used to access the LTA. All of them will need to import some modules:

```
from datetime import datetime
from awlofar.database.Context import context
```

LOFAR Wiki - https://www.astron.nl/lofarwiki/

```
from awlofar.main.aweimports import CorrelatedDataProduct, \
    FileObject, \
    Observation
from awlofar.toolbox.LtaStager import LtaStager, LtaStagerError
```

The lines above must be added to each of the scripts below for these to work.

Ex: get staging URI's

This script will allow you to find all data within a single project, for example LC2_035. Please change the project name to the code of a project of yours. If you also want to stage the data you found, just set the do_stage variable to True. Be careful with how many files you stage and what size they have: the same limits as for the web interface apply here.

```
# Should the found files be staged ?
do stage = False
# The project to query, LC2_035 has public data
project = 'LC2 035'
# The class of data to query
cls = CorrelatedDataProduct
# Query for private data of the project, you must be member of the project
private data = False
# To see private data of this project, you must be member of this project
if private data :
    context.set project(project)
    if project != context.get current project().name:
        raise Exception("You are not member of project %s" % project)
query observations = Observation.select all().project only(project)
uris = set() # All URIS to stage
for observation in query observations :
    print("Querying ObservationID %s" % observation.observationId)
    # Instead of querying on the Observations of the DataProduct, all
DataProducts could have been queried
    dataproduct guery = cls.observations.contains(observation)
    # isValid = 1 means there should be an associated URI
    dataproduct query &= cls.isValid == 1
    for dataproduct in dataproduct query :
        # This DataProduct should have an associated URL
        fileobject = ((FileObject.data object == dataproduct) &
(FileObject.isValid > 0)).max('creation date')
        if fileobject :
            print("URI found %s" % fileobject.URI)
            uris.add(fileobject.URI)
        else :
            print("No URI found for %s with dataProductIdentifier %d" %
(dataproduct. class . name , dataproduct.dataProductIdentifier))
```

```
2025-09-08 10:05
```

7/11

```
print("Total URI's found %d" % len(uris))
```

```
if do_stage :
    stager = LtaStager()
    stager.stage_uris(uris)
```

Ex: filter on subbands

The following script will find subbands 301 and 302 for all targets within two different projects.

Pay attention to the difference between the keys subband and stationSubband; the former is a sequential number assigned to each subband in an observation, while the latter is linked to the frequency at which the observation was performed. Example: an observation was set up covering the range 30-77.3 MHz with two simultaneous beams using 244 subbands each. In this case, subband will range from 0 to 487, while stationSubband from 153 to 396. The stationSubband information is stored in the observation, but not in the pipeline products (which instead contain the frequency). If you want to search on stationSubband, you must perform your search on observations first, then fetch the pipelines linked to those observations. If you use frequency, you can search directly on pipelines.

As a general advise, before performing a search, you need to **understand thoroughly the meaning of the keywords that you are using and where their values are stored**, otherwise you may not find the data you are looking for.

```
do stage = False
project1 = 'LC2 016'
project2 = 'LC2 012'
subband1 = 301
subband2 = 302
cls = CorrelatedDataProduct
# Query for private data of the project, you must be member of the project
private_data = False
# All URIS to stage
uris = \{
   project1: set(),
   project2: set(),
}
for project in (project1, project2) :
   print("Using project %s" % project)
    if private_data :
        context.set project(project)
        if project != context.get_current_project().name:
            raise Exception("You are not member of project %s" % project)
    query observations = Observation.select all().project only(project)
    for observation in query_observations :
        print("Querying ObservationID %s" % observation.observationId)
        dataproduct query = cls.observations.contains(observation)
        # isValid = 1 means there should be an associated URI
        dataproduct guery &= cls.isValid == 1
```

```
dataproduct query &= ((cls.subband == subband1) | (cls.subband ==
subband2))
       # Or for stationSubband do :
       #dataproduct guery &= ((cls.stationSubband == subband1) |
(cls.stationSubband == subband2))
        for dataproduct in dataproduct guery :
            # This DataProduct should have an associated URL
            fileobject = ((FileObject.data object == dataproduct) &
(FileObject.isValid > 0)).max('creation date')
            if fileobject :
                print("URI found %s" % fileobject.URI)
                uris[project].add(fileobject.URI)
            else :
                print("No URI found for %s with dataProductIdentifier %d" %
(dataproduct.__class__.__name__, dataproduct.dataProductIdentifier))
for project in (project1, project2) :
    print("Total URI's found for project %s: %d" % (project,
len(uris[project])))
stager = LtaStager()
if do stage :
    for project in (project1, project2) :
        stager.stage uris(uris[project])
```

Ex: filter on frequency and observation date

Here, we find data between freq1 and freq2 taken within one project between day1 and day2

```
do stage = False
project = 'LC2 033'
freg1 = 172.0
freq2 = 178.0
day1 = datetime(2014,8,26) # this could include time; ie hours, minutes,
secondes
day2 = datetime(2014,8,29) # idem
# DataProduct class to query; CorrelatedDataProduct, SkyImageDataProduct,
etc ...
cls = CorrelatedDataProduct
# Query for private data of the project, you must be member of the project
private data = False
# To see private data of this project, you must be member of this project
if private data :
    context.set project(project)
    if project != context.get current project().name:
        raise Exception("You are not member of project %s" % project)
query_observations = (
    (Observation.startTime >= day1) &
```

```
2025-09-08 10:05
```

(Observation.endTime < day2)).project only(project) uris = **set**() for observation in query observations : print("Querying ObservationID %s" % observation.observationId) dataproduct query = cls.observations.contains(observation) # isValid = 1 means there should be an associated URI dataproduct_query &= cls.isValid == 1 dataproduct query &= cls.minimumFrequency >= freq1 dataproduct query &= cls.maximumFrequency < freq2</pre> for dataproduct in dataproduct query : # This DataProduct should have an associated URL fileobject = ((FileObject.data object == dataproduct) & (FileObject.isValid > 0)).max('creation_date') if fileobject : print("URI found %s" % fileobject.URI) uris.add(fileobject.URI) else : print("No URI found for %s with dataProductIdentifier %d" % (dataproduct. class . name , dataproduct.dataProductIdentifier)) print("Total URI's found %d" % len(uris)) if do stage : stager = LtaStager()stager.stage uris(uris)

Ex: query public data

Querying public data in projects you are not member of. First set project ALL, then construct a query and optionally limit the query to a certain project :

```
context.set_project('ALL')
query = CorrelatedDataProduct.select_all()
query &= query.project_only('LC0_017')
print(len(query))
# 1800
```

Ex: get release dates

from awlofar.main.aweimports import Observation, PipelineRun, DataProduct
from common.database.Context import context

project = 'LC2_035'

```
# Query for private data of the project, you must be member of the project
private_data = True
```

```
# To see private data of this project, you must be member of this project
if private data :
    context.set project(project)
    if project != context.get current project().name:
        raise Exception("You are not member of project %s" % project)
# Observations
query_observations = Observation.select_all().project_only(project)
for observation in query observations :
    print("Querying ObservationID %s, %s" % (observation.observationId,
observation.releaseDate))
# Pipelines
query_pipelines = PipelineRun.select_all().project_only(project)
for pipeline in query pipelines :
    print("Pipeline: %s, %s, %s" % (type(pipeline).__name__,
pipeline.pipelineName, pipeline.releaseDate))
# Data products
query products = DataProduct.select all().project only(project)
query products &= DataProduct.isValid == 1
for product in query products :
    print("Product: %s, %s, %s, %s" % (product.dataProductIdentifier,
product.dataProductIdentifierSource, product.dataProductType,
product.releaseDate))
```

Python Module for Staging

The python interaction with the LTA catalog can be complemented with the use of a specific module developed to give users more control over their staging requests.

Current released version 2.0 (master branch) is to be used with the new LTA stager (stageit), it is not backwards compatible with the old LTA stager. Older versions of this script (i.e., 1.7 and older) have become obsolete. Please see **"Version 2.0 usage notes"** listed below for documentation (or check the README file in the repository linked above).

- User documentation for <u>stageit</u> can be found at: https://support.astron.nl/confluence/display/SDCP/User+documentation
- Version 2.0 release can be found at: https://git.astron.nl/astron-sdc/lofar_stager_api/-/releases/2.0

Version 2.0 usage notes

The module is made available here (master branch). Simply checkout the master branch and use the script. Please see the last note in the list below with regards to required dependencies.

Notes:

• You need an access token to the stageit api. Please refer to the user guide linked above to sign

- up and login to stageit. After logging in, a token can be obtained in one of two ways:
 - Visit https://sdc.astron.nl/stageit/api/staging/get-token
 - From anywhere in the application, click on your account name in the top right to access your profile. From your profile page, click the "Request token" button to receive a token.
- The token is valid indefinitely. Requesting a token multiple times will yield the same token.
- Make sure the token is available in your ~/.stagingrc file:
 - api_token=YOUR_TOKEN_HERE
 - $\,\circ\,$ remove the old username and password from the <code>.stagingrc</code> file
- The script is Python2 compatible, there is a Dockerfile available for Python2 testing in ./tests/docker
- The requests library is a required dependency. If you care about Python2 compatability, you can use at most version 2.22.0 of requests. Otherwise, you can install any version (note: you can also pip install -r 'requirements.txt', which will install version 2.22.0)

Also note that some functions are not supported in the new LTA stager. The states that a request can be in have been simplified. As such, there is no need for these functions anymore. Upon use, they will display an error stating that the function is deprecated. Please look at the stager_access.py file for more information.

From: https://www.astron.nl/lofarwiki/ - LOFAR Wiki

Permanent link: https://www.astron.nl/lofarwiki/doku.php?id=public:lta_tricks&rev=1686810158

Last update: 2023-06-15 06:22

