
2025-07-01 23:48 1/8 Advanced ways to find and retrieve data in the LTA

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Advanced ways to find and retrieve data in
the LTA

There are some useful ways to find and retrieve your data in the LTA that might not be immediately
obvious. This page explains some of the more advanced options you have.

Queries

You can use colons in numeric queries, to select ranges. This will for example give all
observations and pipelines that have a SAS/Observation ID in the range from 432000 to
432190:

In textual entries, wildcards can be used.

You can put a list of SAS/Observation IDs in the query:

Viewing data

When you are looking at the results of a query you might see something like this:

This means that the observation is known in the LTA, it knows what data was produced, the produced
data was not archived, but further processing happened on the raw data and the results of some of
those pipelines were archived. If you click on the zero, you will see something like this:

https://www.astron.nl/lofarwiki/lib/exe/detail.php?id=public%3Alta_tricks&media=public:lta_wildcard_selection.png

Last update: 2016-03-31 10:50 public:lta_tricks https://www.astron.nl/lofarwiki/doku.php?id=public:lta_tricks&rev=1459421451

https://www.astron.nl/lofarwiki/ Printed on 2025-07-01 23:48

This allows you to navigate from a pipeline back to the original observation, or from the observation
to any pipelines that have run on the raw data.

Retrieving data

You can retrieve data on the Observation and Pipeline level, you don't have to select all files
individually.

If you have a query with more than 1000 results, you can open the multiple pages each in a
separate tab/window.

With the small triangle next to a list, you can fold or unfold the list to get a better overview.

Folded entries

2025-07-01 23:48 3/8 Advanced ways to find and retrieve data in the LTA

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Unfolded entries

DBView

There is a server that gives the option to run your own queries on the database
http://lofar-dbview.target.rug.nl/

A useful query might be this one, that gives you all files for a certain Obs Id (SAS VIC tree ID).

SELECT fo.URI, dp."dataProductType", dp."dataProductIdentifier",
 dp."processIdentifier"
FROM AWOPER."DataProduct+" dp,
 AWOPER.FileObject fo,
 AWOPER."Process+" pr
WHERE dp."processIdentifier" = pr."processIdentifier"
 AND pr."observationId" = '123456'
 AND fo.data_object = dp."object_id"

http://lofar-dbview.target.rug.nl/

Last update: 2016-03-31 10:50 public:lta_tricks https://www.astron.nl/lofarwiki/doku.php?id=public:lta_tricks&rev=1459421451

https://www.astron.nl/lofarwiki/ Printed on 2025-07-01 23:48

 AND dp."isValid" > 0

In this '123456' should be replaced with the Obs Id of an Observation/Pipeline you're looking for.

AstroWise Python Interface

There is also a python interface to the LTA. With this, you can script some advanced queries. To have
this working, you first need to install the LTA client in your machine. Once you have installed the
client, set up your user name and password. These are the same as for MoM. Remember that this is
just a different interface to the LTA catalogue: you will need the same credentials as for the web
interface.

After installing the LTA client, add the following to the file .awe/Environment.cfg in your home
directory

database_user : <your username>
database_password : <your password>

then create the variable awetarget and set it to awlofar. In a bash shell, you can do so by adding the
following to your .profile file:

export AWETARGET=awlofar

Finally, your hostname may cause an error, if it does not contain a full domain. In this case, check
your /etc/hosts file. You should find a line that looks like this

127.0.0.1 localhost

Change that line into

127.0.0.1 localhost <your_host_name>

If you do not know your hostname, just type hostname in a shell and you will get it as an output.

Now, you can use the following script as a test. It may still give you some warnings, but if it prints out
a list of pointings, then you are ready to go. You may need to kill the script, because it will print out all
the observations in a certain patch of the sky archived in the LTA.

python code
from pprint import pprint
from common.database.Context import context
from awlofar.main.aweimports import Observation, Pointing, SubArrayPointing
result = {}
for project in sorted(context.get_projects()) :
 print "Project %(project)s" % vars()
 ok = context.set_project(project)
 # do your query
 obs_ids = set()
 query = (Pointing.rightAscension > 95) & \

https://www.astron.nl/lofarwiki/doku.php?id=lta:client_installation

2025-07-01 23:48 5/8 Advanced ways to find and retrieve data in the LTA

LOFAR Wiki - https://www.astron.nl/lofarwiki/

 (Pointing.rightAscension < 105) & \
 (Pointing.declination > 20) & \
 (Pointing.declination < 30)
 print "Total Pointings %d" % len(query)
 for pointing in query :
 print "Pointing found RA %f DEC %f" % (pointing.rightAscension,
pointing.declination)
 query_subarr = SubArrayPointing.pointing == pointing
 for subarr in query_subarr:
 query_obs = Observation.subArrayPointings.contains(subarr)
 for obs in query_obs :
 obs_ids.add(obs.observationId)
 result[project] = sorted(list(obs_ids))
 print result[project]

pprint(result)

If you get errors and do not manage to retrieve the list of pointings, there may be the need to open
some port on the firewall at your institution. Specifically, port 1521 should be open. In case of trouble,
get in contact with Science Support.

Once you have tested that your connection to the catalogue is working, you are ready to browse the
archive and stage the data you need. Here we will list a few examples of python scripts that can be
used to access the LTA. All of them will need to import some modules:

from datetime import datetime
from awlofar.database.Context import context
from awlofar.main.aweimports import CorrelatedDataProduct, \
 FileObject, \
 Observation
from awlofar.toolbox.LtaStager import LtaStager, LtaStagerError

The lines above must be added to each of the scripts below for these to work.

This simple script will allow you to find and stage all data within a single project LCX_YYY.

do_stage = True
project = 'LCX_YYY'
cls = CorrelatedDataProduct
if not context.set_project(project) :
 raise Exception("You are not member of project %s" % project)

query_observations = Observation.select_all().project_only()
uris = set() # All URIS to stage
for observation in query_observations :
 print("Querying ObservationID %s" % observation.observationId)
 # Instead of querying on the Observations of the DataProduct, all
DataProducts could have been queried
 dataproduct_query = cls.observations.contains(observation)
 # isValid = 1 means there should be an associated URI
 dataproduct_query &= cls.isValid == 1

Last update: 2016-03-31 10:50 public:lta_tricks https://www.astron.nl/lofarwiki/doku.php?id=public:lta_tricks&rev=1459421451

https://www.astron.nl/lofarwiki/ Printed on 2025-07-01 23:48

 for dataproduct in dataproduct_query :
 # This DataProduct should have an associated URL
 fileobject = ((FileObject.data_object == dataproduct) &
(FileObject.isValid > 0)).max('creation_date')
 if fileobject :
 print("URI found %s" % fileobject.URI)
 uris.add(fileobject.URI)
 else :
 print("No URI found for %s with dataProductIdentifier %d" %
(dataproduct.__class__.__name__, dataproduct.dataProductIdentifier))

print("Total URI's found %d" % len(uris))

if do_stage :
 stager = LtaStager()
 stager.stage_uris(uris)

The following will find and stage subbands 301 and 302 for all targets within two different projects.
Pay attention to the difference between the keys subband and stationSubband; the former is a
sequential number assigned to each subband in an observation, while the latter is linked to the
frequency at which the observation was performed. Example: an observation was set up covering the
range 30-77.3 MHz with two simultaneous beams using 244 subbands each. In this case, the key
subband will go from 0 to 487, while stationSubband will go from 153 to 396.

do_stage = False
project1 = 'LCX_YYY'
project2 = 'LCZ_VVV'
subband1 = 301
subband2 = 302
cls = CorrelatedDataProduct

All URIS to stage
uris = {
 project1: set(),
 project2: set(),
}

for project in (project1, project2) :
 print("Using project %s" % project)
 if not context.set_project(project) :
 raise Exception("You are not member of project %s" % project)
 query_observations = Observation.select_all().project_only()
 for observation in query_observations :
 print("Querying ObservationID %s" % observation.observationId)
 dataproduct_query = cls.observations.contains(observation)
 # isValid = 1 means there should be an associated URI
 dataproduct_query &= cls.isValid == 1
 dataproduct_query &= ((cls.subband == subband1) | (cls.subband ==
subband2))
 # Or for stationSubband do :
 #dataproduct_query &= ((cls.stationSubband == subband1) |

2025-07-01 23:48 7/8 Advanced ways to find and retrieve data in the LTA

LOFAR Wiki - https://www.astron.nl/lofarwiki/

(cls.stationSubband == subband2))
 for dataproduct in dataproduct_query :
 # This DataProduct should have an associated URL
 fileobject = ((FileObject.data_object == dataproduct) &
(FileObject.isValid > 0)).max('creation_date')
 if fileobject :
 print("URI found %s" % fileobject.URI)
 uris[project].add(fileobject.URI)
 else :
 print("No URI found for %s with dataProductIdentifier %d" %
(dataproduct.__class__.__name__, dataproduct.dataProductIdentifier))

for project in (project1, project2) :
 print("Total URI's found for project %s: %d" % (project,
len(uris[project])))

stager = LtaStager()
for project in (project1, project2) :
 if do_stage :
 stager.stage_uris(uris[project])

Here, we find and stage data between freq1 and freq2 taken within one project between day1 and
day2

do_stage = True
project = 'LCX_YYY'
freq1 = 172.0
freq2 = 178.0
day1 = datetime(2016,1,20) # this could include time; ie hours, minutes,
secondes
day2 = datetime(2016,1,31) # idem
DataProduct class to query; CorrelatedDataProduct, SkyImageDataProduct,
etc ...
cls = CorrelatedDataProduct

if not context.set_project(project) :
 raise Exception("You are not member of project %s" % project)

query_observations = ((Observation.startTime >= day1) &
 (Observation.endTime < day2)).project_only()
uris = set()
for observation in query_observations :
 print("Querying ObservationID %s" % observation.observationId)
 dataproduct_query = cls.observations.contains(observation)
 # isValid = 1 means there should be an associated URI
 dataproduct_query &= cls.isValid == 1
 dataproduct_query &= cls.minimumFrequency >= freq1
 dataproduct_query &= cls.maximumFrequency < freq2
 for dataproduct in dataproduct_query :
 # This DataProduct should have an associated URL
 fileobject = ((FileObject.data_object == dataproduct) &

Last update: 2016-03-31 10:50 public:lta_tricks https://www.astron.nl/lofarwiki/doku.php?id=public:lta_tricks&rev=1459421451

https://www.astron.nl/lofarwiki/ Printed on 2025-07-01 23:48

(FileObject.isValid > 0)).max('creation_date')
 if fileobject :
 print("URI found %s" % fileobject.URI)
 uris.add(fileobject.URI)
 else :
 print("No URI found for %s with dataProductIdentifier %d" %
(dataproduct.__class__.__name__, dataproduct.dataProductIdentifier))

print("Total URI's found %d" % len(uris))

if do_stage :
 stager = LtaStager()
 stager.stage_uris(uris)

From:
https://www.astron.nl/lofarwiki/ - LOFAR Wiki

Permanent link:
https://www.astron.nl/lofarwiki/doku.php?id=public:lta_tricks&rev=1459421451

Last update: 2016-03-31 10:50

https://www.astron.nl/lofarwiki/
https://www.astron.nl/lofarwiki/doku.php?id=public:lta_tricks&rev=1459421451

	Advanced ways to find and retrieve data in the LTA
	Queries
	Viewing data
	Retrieving data
	Folded entries
	Unfolded entries

	DBView
	AstroWise Python Interface

