
2025-07-01 23:25 1/9 DRAGNET Cluster Usage

LOFAR Wiki - https://www.astron.nl/lofarwiki/

DRAGNET Cluster Usage

Some non-obvious and DRAGNET hardware and setup specific info on using DRAGNET wrt logins,
(fast) network transfers, cluster-wide commands and compute job submission / scheduling via SLURM.

Feel free to extend / improve!

Access and Login

To get an account, get permission from the Dragnet PI: Jason Hessels (hessels@astron.nl).
With permission from Jason, ask Teun Grit (grit@astron.nl) to add access to DRAGNET (via NIS). If
you don't have access to the LOFAR portal, tell him. Idem for the ASTRON portal, i.e. if you are not
working for ASTRON.

Having an account, ssh to hostname dragnet.control.lofar or easier, just dragnet, from the
LOFAR portal (or tunnel through it):

$ ssh USERNAME@dragnet

Password-less Login

Within the cluster (or even to it), don't bother typing your password all the time. Passwords make
cluster-wide commands a nightmare. Instead, use an ssh key pair:

$ ssh-keygen -t rsa # or copy an existing public key pair to .ssh/
$ cat .ssh/id_rsa.pub >> .ssh/authorized_keys
$ chmod 600 .ssh/authorized_keys

(For completeness: Your .ssh/id_rsa contains your private key. Do not share it with others. If
compromised, asap regenerate the key pair.)

To make login between nodes more reliable, you can disable the ssh host identification verification
within DRAGNET. It is overkill within our cluster and if we ever need to reinstall a node, its key
fingerprint will then change, causing your (auto-)login to fail until you manually remove the offending
entries from .ssh/known_hosts.
To disable, add to (or create) your .ssh/config file on DRAGNET:

NoHostAuthenticationForLocalhost yes

Host dragnet dragnet.control.lofar dragproc dragproc-10g
dragproc.control.lofar dragproc-10g.online.lofar drg?? drg??.control.lofar
drg??-10g drg??-10g.online.lofar drg??-ib drg??-ib.dragnet.infiniband.lofar
StrictHostKeyChecking no

Now test if password-less login works by logging in and out to drg01 without entering a password
(this should succeed with no output):

Last update: 2016-08-31 13:08 dragnet:cluster_usage https://www.astron.nl/lofarwiki/doku.php?id=dragnet:cluster_usage&rev=1472648896

https://www.astron.nl/lofarwiki/ Printed on 2025-07-01 23:25

ssh drg01 exit

Finding Applications

To use most applications conveniently, you need to set or extend environment variables, such as
PATH, LD_LIBRARY_PATH, PYTHONPATH, … Instead of the use scripts from CEP3, we have the
modules package to set (or unset) our environment. (Some users just export the needed values
explicitly.)

Practical Summary

On DRAGNET add to your .bash_profile e.g.:

module add local-user-tools lofar casacore

or a similar list (casacore contains python-casacore aka pyrap).

Command to print the list to select from:

$ modules avail

Re-login (or enter the module add <pkgs> command) to apply in each login session. (If you use the
screen(1) program, restart it too!)

If you want to keep using the same tool version instead of auto-upgrading along when updates are
installed, then specify the versioned module name (when available), e.g. lofar/2.17.5 or
casa/4.6

Using the Environment Modules

The “environment values” is a set of key-value pairs per program, inherited from the program that
started it. Each shell has its own copy (so if you change one, others are unaffected). Your environment
is copied and adjusted at login. You can further adjust it using .bash_profile (or .profile or .bashrc or
…).

The complete, sorted list (1000s of lines) and (unexported) shell variables can be printed by typing
set.

Unlike CEP clusters that use the home brew use <pkg> command, we use the module <command>
[pkg] command. Type module help for a list of commands.

List of available modules (Aug 2016):

$ module avail

--
/usr/share/Modules/modulefiles ---

2025-07-01 23:25 3/9 DRAGNET Cluster Usage

LOFAR Wiki - https://www.astron.nl/lofarwiki/

dot module-git module-info modules null use.own

--
----- /etc/modulefiles ---

aoflagger/2.8.0 casa/current casacore/2.1.0 casarest/current
cuda/current lofar/2.11.4 lofar/2.17.5 lofardal/current
srm/2.6.28
aoflagger/current casacore/2.0.1 casacore/current cuda/7.0
karma/1.7.25 lofar/2.12.0 lofar/current mpi/mpich-x86_64
wsclean/1.12
casa/4.6 casacore/2.0.3 casarest/1.4.1 cuda/7.5
local-user-tools lofar/2.14.0 lofardal/2.5.0 mpi/openmpi-x86_64
wsclean/current

Add latest lofar module to your env:

$ module add lofar # or a specific one e.g. module add lofar/2.17.5

Remove module from your env (e.g. if it conflicts with another version you want to use):

$ module rm lofar
$ module purge # remove all added modules

To run the prefactor and factor imaging pipelines, you may want to only use (do not add casa):

$ module add local-user-tools wsclean/1.12 aoflagger/2.8.0 lofar/2.17.5
casarest/1.4.1 casacore/2.1.0

If you login and want to use CASA instead, better run /usr/local/casa-release/bin. You may
also remove (i.e. purge) all added modules and add the casa module, but it only sets PATH, which
then may find CASA's own bin/python and bin/ipython, which interferes easily with other tools.)

See what adding the local-user-tools module (July 2016):

$ module show local-user-tools

/etc/modulefiles/local-user-tools:

module-whatis Adds tools, libraries and Python modules under /usr/local
to your environment.
 Pulsar tools : dspsr, psrcat, psrdada, pstfits, psrchive, tempo, tempo2,
dedisp, sigproc, ffasearch, ephem, see, clig, ...
 Imaging tools: factor, losoto, ds9, Duchamp, sagecal, excon imager,
rmsynthesis, pyselfcal, ...
prepend-path PATH /usr/local/bin
prepend-path PYTHONPATH /usr/local/lib/python2.7/site-
packages:/usr/local/lib64/python2.7/site-packages

Last update: 2016-08-31 13:08 dragnet:cluster_usage https://www.astron.nl/lofarwiki/doku.php?id=dragnet:cluster_usage&rev=1472648896

https://www.astron.nl/lofarwiki/ Printed on 2025-07-01 23:25

Hostname Hell and Routing Rampage

If you are just running some computations on DRAGNET, skip this section. But if you need fast
networking, or are already deep in the slow data transfers and rapid-fire connection errors, here is
some info that may save you time wrt the multiple networks and network interfaces. (Or just tell us
your needs.)

Hostnames

dragnet(.control.lofar)
dragproc(.control.lofar)
drg01(.control.lofar) - drg23(.control.lofar)

Networks

Control/Management network: NODENAME.control.lofar (1 Gb) (all nodes)
10G network: NODENAME-10g.online.lofar (10 Gb) (all drgXX
nodes and the dragproc node)
Infiniband network (IPoIB): NODENAME-ib.dragnet.infiniband.lofar (56 Gb)
(all drgXX nodes)

(There is also a 1 Gb IPMI network.)

Cross-Cluster

When writing scripts that (also) have to work cross-cluster, prefer to use the fully-qualified
domainnames (FQDN) (e.g. drg11-10g.online.lofar instead of just drg11). See /etc/hosts on
any node for the list.

In most cases, you will use the network as deduced from the destination hostname or IP. Indicate a
10G name to use the 10G network. Idem for infiniband (IPoIB). (Exception: CEP 2, see below.)

Note: Copying large data sets at high bandwidth to/from other clusters (in particular CEP 2) may
interfere with running observations as long as CEP 2 is still in use. If you are unsure, ask us. It is ok to
use potentially oversubscribed links heavily, but please coordinate with Science Support!

CEP 2

Initiate connections for e.g. data transfers from CEP 2 to HOSTNAME-10g.online.lofar and you will go
via 10G.

The reverse, connecting from DRAGNET to CEP 2, by default will connect you via DRAGNET 1G (e.g.
for login). To use 10G (e.g. to copy datasets), you need to bind to the local 10G interface name or IP.
The program you are using has to support this via e.g. a command-line argument.

2025-07-01 23:25 5/9 DRAGNET Cluster Usage

LOFAR Wiki - https://www.astron.nl/lofarwiki/

Cluster-wide Commands

To run a command over many cluster nodes, use cexec (as on CEP2/3), ansible, or a shell loop
around an ssh/scp command. (First, see the section above on Password-less Login.)

cexec (shell) runs any shell command in parallel. Output is sorted and only appears after all
nodes finished. Indexed hostname specification.
ansible (Python) is easy with simple commands or with Ansible modules to support idempotent
changes. Easy integration in Python programs. No sorted output, but node output appears when
a node is done. No shell interpretation of commands, which may be a restriction or rather safe.
Can run commands in parallel. Tailored for system administration, configuration and
deployment.
shell loop around ssh is most basic and possibly powerful wrt UNIX tools, but tricky wrt
escaping, which remote environment values are actually used, and for dealing correctly with
filename corner cases. Scripts easily end up shell specific (e.g. bash vs tcsh).

NOTE: be careful with potentially destructive operations like rm -rf. Accidents have happened (data
loss) on CEP2 with cexec and shell scripts.

C3 Cexec

The Cluster Command and Control (C3) tool suite contains the cexec(1) program that can be used to
run commands over many nodes.

Example:

$ cexec drg:3-5 "df -h" # disk usage on the drg04(!), drg05, drg06(!)
nodes
$ cexec dragnet:23 ls # run ls on dragproc
$ cexec hostname # hostnames as seen from each cluster node

The hostname specifier (2nd optional argument) must contain a ':' and may also be drg, which
excludes the dragproc node. The dragnet hostname specifier contains all nodes (incl head node).
The drg group is without dragproc. The head node is never part of the group, though you can
explicitly specify it if needed e.g. in scripts. Note that the hostname numbers here specify start and
end index (starting at 0!).

Ansible

Ansible is a tool to automate cluster (administration) tasks.

Examples of simple commands:

$ ansible alldragnet -a 'df -h' # disk
usage on all nodes
$ ansible proc:workers -f 25 -a 'df -h /data1 /data2' # disk
usage on dragproc and worker nodes, connect to max 25 nodes at a time
$ ansible workers -f 25 -a 'ls -al /data1/LOBSID /data2/LOBSID' # list

http://www.csm.ornl.gov/torc/c3/
http://www.ansible.com/

Last update: 2016-08-31 13:08 dragnet:cluster_usage https://www.astron.nl/lofarwiki/doku.php?id=dragnet:cluster_usage&rev=1472648896

https://www.astron.nl/lofarwiki/ Printed on 2025-07-01 23:25

/data*/LOBSID files on all drg* nodes, connect to max 25 nodes a time
$ ansible drg01:drg17 -a 'ls -l /data1' # list
/data1 on drg01 and drg17 (not drg01 till drg17)

Apart from hostnames, the following hostname groups are also recognized on DRAGNET: head, proc,
workers, alldragnet, all (last two are the same). The command must be a simple command. It
can be the name of an executable shell script if accessible to all hosts, but not a compound shell
command with &, &&, pipes or other descriptor redirection (you can of course run the shell with some
argument, but then, what's the point of using ansible like that?).

Background: Ansible heavily relies on the idea to specify what you want in terms of the desired
situation rather than what to do to get there. Such idempotent commands work correctly regardless
whether some nodes are already ok or different. To this end ansible has numerous modules to
manipulate system settings in an easy way, but you can also write your own modules (e.g. to reinstall
(parts of) a type of node), or so-called playbooks to manage configuration and deployment.

For many common system admin related tasks, use an ansible module. Search the Ansible Module
Index for more info.

Shell Loop and SSH

Examples:

$ for ((i = 1; i <= 10; i++)); do host=$(printf drg%02u $i); ssh $host "df -
h"; done # disk usage on the drg01-drg10 nodes
$ for host in drg01 drg17; do ssh $host "df -h"; done
disk usage on drg01 and drg17

Be careful with complex commands!

SLURM Job Submission

To utilize the cluster efficiently, we use the SLURM workload manager. This is also supposed to ensure
that batch jobs do not interfere with observations that DRAGNET participates in (as in: micromize
observation data loss).

Random notes:

SLURM does not enforce accessing nodes through it; one can access any node via ssh.
Depending on the intention and the current workload, that may be fine or less desirable.
SLURM has a ton of options that we haven't all set up. In particular, atm it does not enforce
exclusive access to GPUs via cgroups (although it does set CUDA_VISIBLE_DEVICES if you
explicitly request GPUs). Once a node is (partially) assigned to your program, your program can
in principle use any resource on that node.

Introduction: the trivial stuff

http://docs.ansible.com/ansible/modules_by_category.html
http://docs.ansible.com/ansible/modules_by_category.html
http://slurm.schedmd.com/

2025-07-01 23:25 7/9 DRAGNET Cluster Usage

LOFAR Wiki - https://www.astron.nl/lofarwiki/

From any DRAGNET node (typically the dragnet head node), you can submit compute (or perhaps
also separate data transfer) jobs.

Use srun to start a task, see output as it is produced, and wait for completion. Use resource options
such as –nodes=10 or –tasks=10, and/or –nodelist=drg01 to reserve nodes or CPUs (see below or man
srun for more info).

$ srun --nodes=5 --nodelist=drg01,drg02 ls -l /data1 /data2
dir1 dir2 file1 file2 [...]

Use sbatch to queue a job to run a supplied batch script with various commands, advanced options,
and resource specifications in shell comments (see below). (No need to also use the screen
command.) Slurm immediately prints the JobId and returns. It redirects stdout and stderr to a slurm-
<JobId>.log file. For simple cases, auto-generate the script using –wrap.

$ sbatch --mail-type=END,FAIL --mail-user=your-email-addr@example.com --
wrap="ls -l /data1 /data2"
Submitted batch job <JobId>

The srun and sbatch mostly take the same args, so likely, you want to combine the 2 examples
above using sbatch and the resource options, or better, supply a simple shell script.
Tip: use absolute path names and $HOME.

Show list of jobs queued:

$ squeue
 JOBID PARTITION NAME USER ST TIME NODES
NODELIST(REASON)
 9 workers ls amesfoor CD 0:01 1 drg

Show list of recently completed jobs:

$ squeue -t COMPLETED
 JOBID PARTITION NAME USER ST TIME NODES
NODELIST(REASON)
 9 workers ls amesfoor CD 0:01 1 drg

Show details of a specific job:

$ scontrol show job <JobId>
JobId=223058 JobName=wrap
 [<~20 lines of info on status, resources, times, directories, ...>]

Show list and state of nodes. When submitting a job, you can indicate one of the partitions listed or a
(not necessarily large enough) set of nodes that must be used. Please hesitate indefinitely when
trying to submit insane loads to the head partition. :)

Last update: 2016-08-31 13:08 dragnet:cluster_usage https://www.astron.nl/lofarwiki/doku.php?id=dragnet:cluster_usage&rev=1472648896

https://www.astron.nl/lofarwiki/ Printed on 2025-07-01 23:25

$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
workers* up infinite 23 idle drg[01-23]
proc up infinite 1 idle dragproc
head up infinite 1 idle dragnet

If you get an error on job submission that there are no resources in the cluster to ever satisfy your
job, and you know this is wrong (no typo), you can see with the sinfo if there are nodes out of
service. (SLURM may remove a node from a partition on misconfiguration or hardware
malfunctioning.)

More detail:

$ sinfo -o "%10N %8z %8m %40f %10G %C"
NODELIST S:C:T MEMORY FEATURES GRES
CPUS(A/I/O/T)
drg[01-23] 2:8:1 128500 (null) gpu:4
0/368/0/368
dragnet,dr 1+:4+:1+ 31800+ (null) (null)
0/24/0/24

where in the last column A = Allocated, I = Idle, O = Other, T = Total

Hints on using more SLURM capabilities

The sbatch(1) command offers to:

take a user-supplied job (batch) script, not just to start your script, but also to set up a job array
or workflow
have stdout/stderr go to a file
copy the program (and possibly library and data dependencies) to the to be used nodes
run the job without blocking your terminal on its completion. This is useful for e.g. substantial
processing jobs
auto-restart on failure (not sure when/how that applies)

Apart from nodes, it is also possible to indicate scheduling constraints on CPU cores, GPUs, memory,
or network bandwidth (if we set that up).
Atm, you have to indicate constraints for:

either number of nodes or CPUs
number of GPUs, if any needed. If no GPUs are requested, any GPU program will fail. (Btw, this
policy is not fully as intended, so if technically it can be improved, we can look into it.)
if you want to run >1 job on a node at the same time, memory. Just reserve per job: 128500 /
NJOBS_PER_NODE. By default, SLURM reserves all the memory of a node, preventing other jobs
from running on the same node(s). This may or may not be the intention. (If the intention,
better use --exclusive.)

Note that a CPU is to SLURM a hardware resource that the OS can schedule a task on. On DRAGNET it
is a CPU core (16 on all nodes, but 4 on the head node). (On typical SLURM installs, it's a hardware

2025-07-01 23:25 9/9 DRAGNET Cluster Usage

LOFAR Wiki - https://www.astron.nl/lofarwiki/

thread, but we don't expect to get something out of HyperThreading.)

To indicate a scheduling resource constraint on 2 GPUs, use the –gres option (gres stands for generic
resource):

$ srun --gres=gpu:2 -n 1 your_gpu_prog

To indicate a list of nodes that must be used (list may be smaller than number of nodes requested).
Some examples:

$ srun --nodelist=drg02 ls
$ srun --nodelist=drg05-drg07,drg22 -n 8 ls
$ srun --nodelist=./nodelist.txt ls # with a '/' in the arg value

For the moment, see more explanation and examples at
http://hpcf.umbc.edu/how-to-run-programs-on-maya/

Please see the manual pages on srun(1), sbatch(1), salloc(1) and the SLURM website for more info.

SLURM Cluster Management

Some commands I looked up and probably need again another time.

Bring fixed node back to partition from state DOWN to state IDLE (logged in as slurm):

$ scontrol update NodeName=drg02 state=idle

Users can resume their (list of) job(s) after SLURM found it/they cannot be run (network errors or so)
and sets the status to something like 'launch failed, requeued held'. If the range is sparse, slurm
prints some errors, but does resume all existing jobs.
This can also be exectured by users for their own jobs.

$ scontrol resume 100
$ scontrol resume [1000,2000]

From:
https://www.astron.nl/lofarwiki/ - LOFAR Wiki

Permanent link:
https://www.astron.nl/lofarwiki/doku.php?id=dragnet:cluster_usage&rev=1472648896

Last update: 2016-08-31 13:08

http://hpcf.umbc.edu/how-to-run-programs-on-maya/
http://slurm.schedmd.com/
https://www.astron.nl/lofarwiki/
https://www.astron.nl/lofarwiki/doku.php?id=dragnet:cluster_usage&rev=1472648896

	DRAGNET Cluster Usage
	Access and Login
	Password-less Login

	Finding Applications
	Practical Summary
	Using the Environment Modules

	Hostname Hell and Routing Rampage
	Hostnames
	Networks
	Cross-Cluster
	CEP 2

	Cluster-wide Commands
	C3 Cexec
	Ansible
	Shell Loop and SSH

	SLURM Job Submission
	Introduction: the trivial stuff
	Hints on using more SLURM capabilities
	SLURM Cluster Management

