public:documents:raw_olap_data_formats

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
public:documents:raw_olap_data_formats [2011-02-11 14:50] Jan David Molpublic:documents:raw_olap_data_formats [2017-03-08 15:27] (current) – external edit 127.0.0.1
Line 1: Line 1:
-===== Raw OLAP data formats ====+===== Raw OLAP data formats (obsolete) ====
  
-OLAP produces several data formats, which are intended to be replaced by their final format, such as HDF5. The formats below are not officially supported and subject to change without notice.+OLAP produces several data formats, which are intended to be replaced by their final format, such as HDF5. 
 + 
 +===== After 2011-10-24 ===== 
 + 
 +Files adhere to the following naming scheme: ''Liiiii_SAPsssss_Bbbb_Sz_bf.raw'', with: 
 + 
 +  - ''iiiii'' = SAS observation ID 
 +  - ''sssss'' = Station beam number (SAP) 
 +  - ''bbb'' = Tied-array beam number (TAB) 
 +  - ''z'' = Stokes number 
 + 
 +The stokes numbers are to be interpreted as follows: 
 + 
 +  - Complex Voltages: 
 +     - z = 0 -> Xr (X polarisation, real part) 
 +     - z = 1 -> Xi (X polarisation, imaginary part) 
 +     - z = 2 -> Yr (Y polarisation, real part) 
 +     - z = 3 -> Yi (Y polarisation, imaginary part) 
 +  - Coherent/incoherent Stokes: 
 +     - z = 0 -> I 
 +     - z = 1 -> Q 
 +     - z = 2 -> U 
 +     - z = 3 -> V 
 + 
 +The data is encoded as follows. Each .raw file is a multiple of the following structure. All data is written as big-endian 32-bit IEEE floats. 
 + 
 +<code> 
 +struct block { 
 +  float sample[SUBBANDS][CHANNELS]; 
 +}; 
 +</code> 
 + 
 +The constants used can be derived from the parset: 
 + 
 +<code> 
 +  SUBBANDS = len(parset["Observation.subbandList"]) 
 + 
 +  if (complex voltages || coherent stokes) { 
 + 
 +    CHANNELS = parset["OLAP.CNProc_CoherentStokes.channelsPerSubband"
 +    if (CHANNELS == 0) CHANNELS = parset["Observation.channelsPerSubband"
 + 
 +  } elif (incoherent stokes) { 
 + 
 +    CHANNELS = parset["OLAP.CNProc_IncoherentStokes.channelsPerSubband"
 +    if (CHANNELS == 0) CHANNELS = parset["Observation.channelsPerSubband"
 + 
 +  } 
 +</code> 
 + 
 +The sampling rate can be derived as follows: 
 + 
 +<code> 
 +  # clock frequency (f.e. 200 MHz) 
 +  clock_hz = parset["Observation.sampleClock"] * 1.0e6 
 + 
 +  # subband frequency (f.e. 195 kHz) 
 +  base_subband_hz = clock_hz / 1024 
 + 
 +  # channel frequency (f.e. 763 Hz) 
 +  base_nrchannels = parset["Observation.channelsPerSubband"
 +  base_channel_hz = base_subband_hz / base_nrchannels 
 + 
 +  if(complex voltages || coherent stokes) { 
 +    cs_temporalintegration = parset["OLAP.CNProc_CoherentStokes.timeIntegrationFactor"
 + 
 +    sample_hz = base_channel_hz / cs_temporalintegration 
 + 
 +  } elif(incoherent stokes) { 
 + 
 +    is_temporalintegration = parset["OLAP.CNProc_IncoherentStokes.timeIntegrationFactor"
 + 
 +    sample_hz = base_channel_hz / is_temporalintegration 
 +  } 
 +     
 +</code> 
 + 
 +===== Before 2011-10-24 =====
  
 Data can be recorded as either complex voltages (yielding X and Y polarisations) or one or more stokes. In either case, a sequence of blocks will be stored, each of which consists of a header and data. The header is defined as: Data can be recorded as either complex voltages (yielding X and Y polarisations) or one or more stokes. In either case, a sequence of blocks will be stored, each of which consists of a header and data. The header is defined as:
Line 18: Line 95:
 |Lxxxxx_Byyy_S0_bf.raw|X polarisations of beam yyy of observation xxxxx| |Lxxxxx_Byyy_S0_bf.raw|X polarisations of beam yyy of observation xxxxx|
 |Lxxxxx_Byyy_S1_bf.raw|Y polarisations of beam yyy of observation xxxxx| |Lxxxxx_Byyy_S1_bf.raw|Y polarisations of beam yyy of observation xxxxx|
 +
 +Proposed is the following scheme:
 +
 +|Lxxxxx_Byyy_S0_bf.raw|X polarisation (real part) of beam yyy of observation xxxxx|
 +|Lxxxxx_Byyy_S1_bf.raw|X polarisation (imaginary part) of beam yyy of observation xxxxx|
 +|Lxxxxx_Byyy_S2_bf.raw|Y polarisation (real part) of beam yyy of observation xxxxx|
 +|Lxxxxx_Byyy_S3_bf.raw|Y polarisation (imaginary part) of beam yyy of observation xxxxx|
  
 Each file is a sequence of blocks of the following structure: Each file is a sequence of blocks of the following structure:
Line 24: Line 108:
 struct block { struct block {
   struct header header;   struct header header;
 +
 +  /* each block contains SAMPLES samples. The data structure is two samples larger (|2) for
 +     technical reasons, but those two samples do not actually exist, and thus should be read
 +     and immediately discarded. Time should just be incremented SAMPLES samples per block. */
  
   /* big endian */   /* big endian */
Line 32: Line 120:
   // 2010-06-29 release and earlier stored data per subband instead of per beam:   // 2010-06-29 release and earlier stored data per subband instead of per beam:
   fcomplex voltages[BEAMS][CHANNELS][SAMPLES|2][POLARIZATIONS];   fcomplex voltages[BEAMS][CHANNELS][SAMPLES|2][POLARIZATIONS];
-  */ +  */
 }; };
 </code> </code>
Line 52: Line 140:
  
 <code C> <code C>
 +// Since 2011-10-24, Stokes are just a continuous stream of samples:
 +struct block {
 +  float stokes[SAMPLES][SUBBANDS][CHANNELS];
 +};
 +
 +// Before 2011-10-24:
 struct block { struct block {
   struct header header;   struct header header;
 +
 +  /* each block contains SAMPLES samples. The data structure is two samples larger (|2) for
 +     technical reasons, but those two samples do not actually exist, and thus should be read
 +     and immediately discarded. Time should just be incremented SAMPLES samples per block. */
  
   /* big endian */   /* big endian */
Line 82: Line 180:
 struct block { struct block {
   struct header header;   struct header header;
 +
 +  /* each block contains SAMPLES samples. The data structure is two samples larger (|2) for
 +     technical reasons, but those two samples do not actually exist, and thus should be read
 +     and immediately discarded. Time should just be incremented SAMPLES samples per block. */\
  
   /* big endian */   /* big endian */
Line 111: Line 213:
 A BFRaw file starts with a file header containing the configuration: A BFRaw file starts with a file header containing the configuration:
  
-<code>+<code C>
 struct file_header struct file_header
 { {
Line 141: Line 243:
 After the file header, there is a series of blocks until the end of file, configured using values from the file header: After the file header, there is a series of blocks until the end of file, configured using values from the file header:
  
-</code>+<code C>
 struct block struct block
   // 0x2913D852   // 0x2913D852
   uint32_t      magic;   uint32_t      magic;
-  int32_t       coarseDelayApplied[8];+ 
 +  // per-SAP information (up to 8 SAPs can be defined, but typically only 1 is used) 
 + 
 +  // number of samples the signal is shifted to align the station beam to the reference 
 +  // phase center (=Observation.referencePhaseCenter in the parset) 
 +  int32_t       coarseDelayApplied[8]; 
   // Padding to circumvent 8-byte alignment   // Padding to circumvent 8-byte alignment
   uint8_t       padding[4];   uint8_t       padding[4];
 +
 +  // the sub-sample delay which still has to be compensated for (in seconds),
 +  // at the beginning and at the end of the block
   double     fineDelayRemainingAtBegin[8];   double     fineDelayRemainingAtBegin[8];
   double     fineDelayRemainingAfterEnd[8];   double     fineDelayRemainingAfterEnd[8];
-  // Compatible with TimeStamp class.+  // Compatible with TimeStamp class (see below)
   int64_t      time[8];   int64_t      time[8];
  
   struct marshalledFlags   struct marshalledFlags
   {   {
 +    // up to 16 ranges of flagged samples within this block
     uint32_t      nrFlagsRanges;     uint32_t      nrFlagsRanges;
     struct range     struct range
Line 163: Line 274:
   } flags[8];   } flags[8];
  
-  std::complex<int16_t> samples[fileHeader.nrSubbands][fileHeader.nrSamplesPerSubband][fileHeader.nrPolarizations];+  std::complex<int16_t> 
 +    samples[fileHeader.nrSubbands][fileHeader.nrSamplesPerSubband][fileHeader.nrPolarizations];
 }; };
 </code> </code>
  
-  /* write routine */ +To convert a TimeStamp-compatible int64_t to a C-readable timestamp, use 
-  std::string stationName = itsPS->getStationNamesAndRSPboardNumbers(itsPsetNumber)[0].station; // TODO: support more than one station +<code C
- +/* clockspeed is in Hz */ 
-  vector<unsigned> subbandToSAPmapping     = itsPS->subbandToSAPmapping(); +int64 nanoseconds = (int64) (timestamp 1024 * 1e9 clockspeed);
-  vector<unsignedsubbandToRSPboardMapping = itsPS->subbandToRSPboardMapping(stationName); +
-  vector<unsigned> subbandToRSPslotMapping  = itsPS->subbandToRSPslotMapping(stationName); +
-  unsigned         nrSubbands               itsPS->nrSubbands()+
-  BFRawFormat      bfraw_data; +
-   +
-  if (!itsFileHeaderWritten) { +
-    if (nrSubbands > 62) +
-      THROW(IONProcException, "too many subbands for raw data format"); +
- +
-    memset(&bfraw_data.header, 0, sizeof bfraw_data.header); +
- +
-    bfraw_data.header.magic               = 0x3F8304EC; +
-    bfraw_data.header.bitsPerSample       = 16; +
-    bfraw_data.header.nrPolarizations     = 2; +
-    bfraw_data.header.nrSubbands          = nrSubbands; +
-    bfraw_data.header.nrSamplesPerSubband = itsNrSamplesPerSubband; +
-    bfraw_data.header.sampleRate          = itsSampleRate; +
- +
-    strncpy(bfraw_data.header.station, itsPS->getStationNamesAndRSPboardNumbers(itsPsetNumber)[0].station.c_str(), sizeof bfraw_data.header.station); +
-    memcpy(bfraw_data.header.subbandFrequencies, &itsPS->subbandToFrequencyMapping()[0], nrSubbands sizeof(double)); +
- +
-    for (unsigned beam = 0; beam < itsNrBeams; beam ++) +
-      memcpy(bfraw_data.header.beamDirections[beam], &itsPS->getBeamDirection(beam)[0], sizeof bfraw_data.header.beamDirections[beam]); +
-    itsRawDataStream->write(&bfraw_data.header, sizeof bfraw_data.header); +
-    itsFileHeaderWritten = true; +
-  } +
- +
-  memset(&bfraw_data.block_header, 0, sizeof bfraw_data.block_header); +
- +
-  bfraw_data.block_header.magic = 0x2913D852; +
- +
-  for (unsigned beam = 0; beam < itsNrBeams; beam ++) { +
-    bfraw_data.block_header.coarseDelayApplied[beam]     = itsSamplesDelay[beam]; +
-    bfraw_data.block_header.fineDelayRemainingAtBegin[beam]      = itsFineDelaysAtBegin[beam][0]; +
-    bfraw_data.block_header.fineDelayRemainingAfterEnd[beam] = itsFineDelaysAfterEnd[beam][0]; +
-    bfraw_data.block_header.time[beam]                   = itsDelayedStamps[beam]; +
- +
-    // FIXME: the current BlockHeader format does not provide space for +
-    // the flags from multiple RSP boards --- use the flags of RSP board 0 +
-    itsFlags[0][beam].marshall(reinterpret_cast<char *>(&bfraw_data.block_header.flags[beam]), sizeof(BFRawFormat::BlockHeader::marshalledFlags)); +
-  } +
- +
-  itsRawDataStream->write(&bfraw_data.block_header, sizeof bfraw_data.block_header);+
  
-  for (unsigned subband 0subband < nrSubbands; subband ++) +struct timespec ts; 
-    itsBeamletBuffers[subbandToRSPboardMapping[subband]]->sendUnalignedSubband(itsRawDataStream, subbandToRSPslotMapping[subband], subbandToSAPmapping[subband]);+ts.tv_sec  nanoseconds / 1000000000ULL
 +ts.tv_nsec = nanoseconds % 1000000000ULL;
 </code> </code>
  
  • Last modified: 2011-02-11 14:50
  • by Jan David Mol