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ABSTRACT
Traditional networks are relatively static and rely on a complex
stack of interoperating protocols for proper operation. Modern
large-scale science instruments, such as radio telescopes, consist
of an interconnected collection of sensors generating large quan-
tities of data, transported over high-bandwidth IP over Ethernet
networks. The concept of a software-de�ned network (SDN) has
recently gained popularity, moving control over the data �ow to
a programmable software component, the network controller. In
this paper we explore the viability of such an SDN in sensor net-
works typical of future large-scale radio telescopes, such as the
Square Kilometre Array (SKA). Based on experience with the LOw
Frequency ARray (LOFAR), a recent radio telescope, we show that
the addition of such software control adds to the reliability and
�exibility of the instrument. We identify some essential technical
SDN requirements for this application, and investigate the level of
functional support on three current switches and a virtual software
switch. A proof of concept application validates the viability of
this concept. While we identify limitations in the SDN implementa-
tions and performance of two of our hardware switches, excellent
performance is shown on a third.
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1 INTRODUCTION
To expose the increased functionality in packet switching ASICs
at the heart of networking equipment, the concept of a software-
de�ned network has appeared. Whereas in a traditional IP over
Ethernet network control over the data �ow is mostly implicit, SDNs
move this to programmable network controllers. In this paper, we
study the usefulness of SDNs for an important application: large-
scale radio telescopes.

Modern large-scale science instruments, and in particular radio
telescopes, are often distributed sensor networks. They consist of
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large numbers of sensors that sample the object of interest. Spe-
cialized custom hardware is used to convert the collected data into
the digital domain and perform dedicated signal processing. A cen-
tralized general-purpose computing facility reduces data volumes,
calibrates the instrument and allows the user to extract science.
These components are interconnected with high-volume networks,
often based on o�-the-shelf IP over Ethernet equipment.

We argue that an SDN adds valuable additional functionality,
while mitigating some of the challenges an IP over Ethernet net-
work may cause. Using a proof of concept application, we explore
the required SDN functionality for this application, and the current
level of support for these SDN features in three available hard-
ware switches and a software-based virtual switch. We also present
limited performance measurements, although we note that the in-
vestigated switches are of modest scale and performance. While
we �nd signi�cant limitations in some of our investigated switches,
we demonstrate the viability of using an SDN in large-scale radio
telescopes.

2 IMPACT
In a previous memo we described some of the limitations of an
IP over Ethernet network in the LOFAR radio telescope [2]. By
replacing the traditional Ethernet-based network infrastructure
with an SDN, many of these issues are alleviated. We foresee that
by changing the way packets are processed, the robustness of the
system is improved. More direct control over the packet forwarding
is gained and multi-homed systems are better handled. Furthermore,
the increased �exibility o�ered by the software controlled data
plane allows for additional instrument functionality, such as the
ability to dynamically change the data �ow or to integrate the data
�ow into the processing model. We discuss some examples below.

Robustness – Packet forwarding. A network switch typically re-
ceives data and forwards it to its destination(s). A MAC address
table, matching output ports with host MAC addresses, is main-
tained in the switch, populated by monitoring source MAC address
and physical port of incoming packets. When the appropriate out-
put port cannot be determined, data is forwarded on all output
ports, with the exception of the ingress port, reducing the switch
to a hub. This behavior guarantees that packets have the highest
possible chance of arriving at their destination, but in normal oper-
ation this should rarely be needed. Further tra�c, such as unicast
acknowledgments, usually allows successive packets to be properly
directed.
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In a specialized sensor network with custom hardware, parts of
this standard network stack may be omitted. A continuous stream
of strictly uni-directional data is generated by the sensors and
emitted to the network. A miscon�guration or failure of a sensor
may cause the network to be �ooded by packets forwarded on all
ports. In e�ect this failure mode may be considered a self-in�icted
Distributed Denial of Service (DDoS) attack.

In an SDN, the way unrecognized packets are handled is con�g-
urable. Non-matching packets may be dropped or have their headers
forwarded to the network controller for further processing. Neither
of these actions will cause the network to be �ooded, although the
latter may cause signi�cant load on the network controller.

Robustness – ARP flux. In high-bandwidth systems, it may be
necessary to connect multiple Ethernet interfaces in a node to the
same network. While there are ways to bond these devices into
a single virtual Ethernet interface, no guarantees can be given
on the e�ective use of available bandwidth. Therefore we prefer
to explicitly address each of the interfaces. Linux nodes tend to
answer Address Resolution Protocol (ARP) requests for addresses
they host on any interface, which may cause switches to associate
the wrong port with that MAC address. This gives rise to ARP
�ux, in which data addressed to a node does arrive, but on the
wrong interface, causing the operating system to drop this data. The
positive control that an SDN allows over the data �ow mitigates this
problem. Whereas a conventional network relies on MAC learning
to determine the physical output port to forward packets to, in an
SDN the output port is explicitly de�ned.

Flexibility – Publish-Subscribe model. Unicast tra�c is very di�-
cult to redirect or duplicate at the network level. Switches may be
con�gured to output tra�c to a designated port, but this is resource
intensive. Data forwarded on such a monitoring port is not easily
consumed, since it will be addressed to the original destination host.
Generally, a host operating system will transparently drop data not
speci�cally addressed to it, unless running in promiscuous mode.

An SDN gives us the �exibility to not only forward data to a
speci�c physical output port, but also modify the packet headers to
match the receiving host. In essence, this breaks the tight coupling
between sender and receiver, since the sending peer no longer nec-
essarily has knowledge of the receiving peer’s address. By moving
this control to the software layer of the receiving system, we can
build what can conceptually be seen as a publish/subscribe system.
This is similar to IP multicast in concept, but not in implementation.
Where IP multicast relies on the network infrastructure to properly
direct data, in an SDN this is done by the network controller. This
not only improves �exibility, but also allows us to integrate this
functionality more deeply into our software.

In a radio telescope, we may use this functionality to process
data more than once, without the overhead of re-transmitting data.
This is useful when running multiple processing pipelines, serv-
ing multiple observation modes, or for the commissioning of new
processing hardware or algorithms. In the latter use case, results
from newly installed hardware or software implementations are
compared to those from established systems to verify functionality.

Flexibility – Data flow as part of the processing model. The addi-
tion of a software component into the data plane of a radio telescope

allows us to integrate this data plane into our software systems.
This more direct and positive control over the data �ow allows
us to manipulate the data �ow without having to recon�gure the
sending peer. Data movement may now be directly coupled to the
processing schedule, creating, for instance, a system of data-driven
round-robin processing, where data is directed to processing nodes
as needed. Going even further we could envision implementing an
in-network transpose, similar in concept to an MPI_AllToAll().
The directing of data would be based on a combination of Layer 2
and Layer 3 addresses that identify the content su�ciently.

3 SDN IMPLEMENTATION
To explore the viability of an SDN as part of a modern radio tele-
scope we focus on the most prevalent and most widely implemented
software-de�ned networking protocol currently available: Open-
Flow [3]. We investigate which features provided by OpenFlow
are required to implement a suitable SDN. The support for these
features in four available SDN-capable switches, both hardware
and software, is summarized in Section 4.

Our proof of concept is simple, but allows us to gauge the level
of support in current platforms. Two cases are implemented, both
manipulating a data stream emitted from a LOFAR signal genera-
tor. This emulates a LOFAR station-processing board and emits a
continuous UDP/IP data stream to a single host identi�ed by its IP
and MAC addresses.

Two main scenarios are tested that are representative of how an
SDN may be used in a radio telescope:

(1) redirect data destined for A to B
(2) duplicate data destined for A to also go to B

Since we are most interested in the feasibility of the concept
rather than the performance of these platforms, we limit ourselves
to a single data stream of around 700 Mbps, which is 1

4 th of the
data rate of a single LOFAR station. We limited ourselves to a single
stream of limited bandwidth, but the near embarrassingly parallel
nature of the data �ow makes this a representative test that allows
for an exploration of the required functionality.

Redirecting data. We redirect the data from its original destina-
tion to a second host by modifying the Layer 2 destination MAC
address and the Layer 3 destination IP address and forwarding the
packet to the appropriate port. We use the Set Field functionality
de�ned in the OpenFlow standard to manipulate destination MAC
and IP address �elds. Note that the implementation of none of the
Set Field features is required in the OpenFlow speci�cation.

Duplicating data. Next, we modify the data �ow such that it is
emitted not just to its original destination, but also to a second
host. We forward packets unmodi�ed to the physical port hosting
the original destination, while a second copy of the data stream
undergoes modi�cation much like described above. Since this re-
quires multiple independent actions on the same data, a di�erent
approach is required. OpenFlow Groups allow the creation of ac-
tion buckets, which are processed and applied independently. We
con�gure a Group such that all buckets are applied to a packet, a
required OpenFlow function. We note however that the applied
actions are bound by the same limitations described above: the Set
Field functionality is still optional.
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4 FUNCTIONALITY INVESTIGATION
Many of the OpenFlow features we use are optional: implementation
of these is not mandatory and often omitted. We also found that
some features that are implemented lack hardware support, leading
to signi�cant bottlenecks. Implementation of the use cases described
in the previous section relies on the following functional elements
in the OpenFlow standard:

• Set Field action destination MAC address
• Set Field action destination IP address
• Group Type=ALL: apply action instructions
• Group Type=ALL: output to multiple ports

We note that to be truly useful, an SDN must support Layer 3
functionality. While we can make a workable proof of concept at
Layer 2 by manipulating just the destination MAC address, this
requires either that all receiving hosts share the same IP address, or
that all host Ethernet interfaces are run in promiscuous mode, which
is not feasible in practice. We investigate available functionality in a
virtual switch, Open vSwitch, and three hardware Gigabit Ethernet
switches: a Pica8 P3290, a Centec V350 and a Brocade ICX7250.

Open vSwitch. Open vSwitch is an open-source virtual switch
that can run within a virtual machine, and as control stack on dedi-
cated switching hardware. Since the same software is also used in
two of our hardware platforms, it is interesting to compare the fea-
ture set supported in a pure software environment to the hardware
implementations. We used the most recent stable version of Open
vSwitch at the time (2.5.0), which fully implements OpenFlow up
to and including version 1.3, including all optional features.

Pica8 P3290. The �rst physical switch we investigate is a Pica8
P3290, located in the OpenLab testbed of the University of Amster-
dam. It is based on a Broadcom switch ASIC and a Freescale CPU
and uses the same Open vSwitch software as described above. This
switch supports all features required to redirect data based on Layer
3 packet header �elds, but modifying the destination IP address
causes major packet loss, suggesting this is handled in software.
As a work-around, we assigned both receiving hosts the same IP
address and redirected data based on just Layer 2 �elds. This is not
necessarily a viable solution in production, since we rely on hosts
sharing IP addresses, which breaks normal IP networking.

To duplicate data we rely on OpenFlow Groups, but in the Pica8
switch these did not work as expected. Only a single, seemingly
random, apply-action was executed before packets were forwarded
to their respective ports. Thus, correctly addressed packets would
only appear at one receiving host, while all others would receive
packets addressed to the wrong destination MAC address. For this
switch we abandoned the use of OpenFlow Groups, and instead
installed a single �ow that sets the destination MAC address to
the broadcast address and forwards the packets to all relevant out-
put ports. We note that this solution rules out the use of hybrid
networking, since the use of the broadcast address in streaming
data will cause non-SDN switches to forward this data on all ports,
quickly overwhelming the network.

Centec V350. An SDN was included in the latest incarnation of
the distributed ASCI supercomputer, DAS-5 [1]. The installation at
the Vrije Universiteit Amsterdam has two Centec V350 switches

based on custom silicon and the familiar Open vSwitch software
environment. Of the investigated hardware platforms, this was the
only one that performed �awlessly. All features we use to redirect
and duplicate data using either Layer 2 or Layer 3 header informa-
tion are supported without observable bottlenecks.

Brocade ICX7250. The Brocade ICX7250 is a mainstream top-of-
rack switch based on a Broadcom ASIC. While it supports OpenFlow,
we found that there are many caveats that limit the usefulness of
this hardware for our application. Although the switch is able to
match �ows based on Layer 3 �elds, it can only modify a very
limited set of header �elds. IP destination address is not one of
these, but the destination MAC address can be modi�ed. Directing
or duplicating data can only be done based on Layer 2 header �elds,
not Layer 3 header �elds. Furthermore, the switch is not able to
output to multiple ports while modifying packet headers, e�ectively
rendering duplication of data impossible.

+: support −: no support ◦: support with caveats Open vSwitch Pica8 Centec Brocade

Set Field action destination MAC address + + + +

Set Field action destination IP address + − + −

Group Type=ALL: apply action instructions + ◦ + +

Group Type=ALL: output to multiple ports + ◦ + ◦

Table 1: Support for OpenFlow features on our switches.

Summary. In Table 1 we summarize our experiences with the
four switches. While we identi�ed missing features, and were not
able to duplicate data on the Brocade switch at all, we successfully
implemented our proof of concept on all switches. Nevertheless, it
is clear that support for the desired OpenFlow functionality varies
widely. Furthermore we found an undocumented de�ciency in the
implementation of OpenFlow Groups in the Pica8 switch.

5 LATENCY AND LOSS
In Section 4 we concluded that not all platforms are capable of
Layer 3 packet header manipulation at line rate. Here, we investi-
gate the loss and latency of all four platforms while redirecting and
duplicating data using Layer 2 and, when available, Layer 3 packet
header information. While the virtual network environment is func-
tionally very well developed, it is limited in performance. Where
other platforms will be expected to handle the output of a single LO-
FAR hardware stream, at approximately 700 Mbps, we reduce this
to about 45 Mbps for Open vSwitch to avoid performance related
packet loss. The virtual machine environment, and the software-
based Ethernet switch make the latency measurements less than
reliable. For completeness, and as a comparison against the other
hardware-based switches, including these is still valuable. In all
cases ten measurements are done, and averages are shown in Tables
2 and 3. Data loss is measured over a period of three seconds, with
12000 packets generated per second.

5.1 Latency and Loss – Redirecting
In Table 2 we summarize the latency and loss of data when redi-
recting streams. As discussed before, Layer 3 functionality is not
available on the Pica8 and Brocade switches. We note that redirect-
ing data using an installed �ow that modi�es the packet header
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and forwards packets to the appropriate port will lead to limited
loss of data on the Centec and Brocade switches and the software
Open vSwitch environment. When the �ow is installed, exactly 16
or 32 packets are lost that arrive neither at the original nor the new
destination. This number is unrelated to the data rate: we ran a low
bandwidth experiment and observed similar lost data. This is likely
due to a packet bu�er that is �ushed when the �ow is installed.

To mitigate this behavior, we could implement the same func-
tionality using OpenFlow Groups, in much the same way as we
did with the duplication of data. Once data is �owing to the new
destination, the original action bucket may be removed. Unfortu-
nately, the RESTful interface to our chosen network controller, ryu,
lacks functionality to remove action buckets from a Group. Our
analysis above indicates that neither the Pica8 nor the Brocade
platform will support this more advanced redirection of data. The

Open vSwitch Pica8 Centec Brocade

Layer 2 latency (ms) 202 (316) 74 (212) 5.9 (0.76) 265 (74)
Layer 2 data loss (packets) 16 (0) 457 (381) 29 (7) 32 (0)
Layer 3 latency (ms) 158 (313) n/a 6.9 (1.2) n/a
Layer 3 data loss (packets) 16 (0) n/a 29 (7) n/a

Table 2: Average latency and loss while redirecting data.
Standard deviation is shown in parentheses.

Pica8 switch exhibits signi�cant loss of data when the appropriate
�ow is installed. While this amounts to approximately 1.3% of the
total data �ow, it is not incidental, suggesting a bottleneck in the
implementation. While not nearly as signi�cant as observed when
we modi�ed Layer 3 headers on this switch, it is still worrisome.
We note that both the Pica8 and the Brocade switch exhibit high
latency and extreme variance, especially compared to the Centec
switch. The stability of the Centec performance is impressive.

5.2 Latency and loss – Duplicating
Table 3 shows our results for the second case study. We install an
OpenFlow Group that forwards packets unmodi�ed to the intended
destination. A second copy of all packets is modi�ed such that the
destination addresses (Layer 2 and Layer 3) match the second re-
ceiving host and are forwarded on the appropriate port. The Pica8
switch does not support modi�cation of the destination IP address
at this rate, therefore for this switch we only modify the destina-
tion MAC address. In our Open vSwitch software environment we
measure both Layer 2 and Layer 3 duplication of data for reference.
Considering the excellent performance of the Centec switch, and
the possible disturbance to the cluster network due to the necessary
modi�cations on the hosts needed to make this work, we only show
Layer 3 performance for that platform. The Centec switch once
again performs very well. We again note signi�cant data loss in the
Pica8 switch, while none of the other workable switches exhibit
any observable loss.

5.3 Summary
Both the Pica8 and the Brocade switches exhibit relatively high
latencies, especially compared to the Centec switch. The loss of
data on the Pica8 switch is worrisome, since it is indicative of

Open vSwitch Pica8 Centec Brocade

Layer 2 latency (ms) 29 (38) 34 (70) - n/a
Layer 2 data loss (packets) 0 (0) 314 (308) - n/a
Layer 3 latency (ms) 59 (55) n/a 5.1 (0.43) n/a
Layer 3 data loss (packets) 0 (0) n/a 0 (0) n/a

Table 3: Average latency and loss while duplicating data.
Standard deviation is shown in parentheses.

a bottleneck that will become more pronounced when we scale
up this proof of concept. In all measurements, the Centec switch
showed excellent performance. Latency is low and stable, and apart
from the initial packets lost when a �ow is installed, no further loss
was observed.

6 CONCLUSIONS
In this paper we investigated the viability of an SDN in a modern
radio telescope. Based on an investigation on the functionality
available in four switches and an implementation of a simple proof
of concept program, we conclude that the concept is viable and
valuable. An SDN by its very de�nition will mitigate some of the
robustness issues we discussed in Section 1. In addition, we have
shown that the additional �exibility we envision is feasible on at
least some of the investigated platforms.

We note that the supported functionality in the investigated
platforms varies greatly. While some o�er support for all required
features, others do not implement features critical for our applica-
tion, or implement some in software only. The OpenFlow standard
is characterized by a large number of optional elements, that may
or may not be implemented by the manufacturer, some of which we
depend upon. Although all switches claim OpenFlow v1.3 support,
support for optional functionality is often not well documented. It
is noteworthy that the way Pica8 implements apply-action instruc-
tions in Groups violates the OpenFlow standard.
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